IDEAS home Printed from https://ideas.repec.org/p/ant/wpaper/2013013.html
   My bibliography  Save this paper

An argument for preferring Firth bias-adjusted estimates in aggregate and individual-level discrete choice modeling

Author

Listed:
  • KESSELS, Roselinde
  • JONES, Bradley
  • GOOS, Peter

Abstract

Using maximum likelihood estimation for discrete choice modeling of small datasets causes two problems. The first problem is that the data often exhibit separation, in which case the maximum likelihood estimates do not exist. Also, provided they exist, the maximum likelihood estimates are biased. In this paper, we show how to adapt Firth's bias-adjustment method for use in discrete choice modeling. This approach removes the first-order bias of the estimates, and it also deals with the separation issue. An additional advantage of the bias adjustment is that it is usually accompanied by a reduction in the variance. Using a large-scale simulation study, we identify the situations where Firth's bias-adjustment method is most useful in avoiding the problem of separation as well as removing the bias and reducing the variance. As a special case, we apply the bias-adjustment approach to discrete choice data from individuals, making it possible to construct an empirical distribution of the respondents' preferences without imposing any a priori population distribution. For both research purposes, we base our findings on data from a stated choice study on various forms of employee compensation.

Suggested Citation

  • KESSELS, Roselinde & JONES, Bradley & GOOS, Peter, 2013. "An argument for preferring Firth bias-adjusted estimates in aggregate and individual-level discrete choice modeling," Working Papers 2013013, University of Antwerp, Faculty of Business and Economics.
  • Handle: RePEc:ant:wpaper:2013013
    as

    Download full text from publisher

    File URL: https://repository.uantwerpen.be/docman/irua/f0a9c0/c584d201.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kessels, Roselinde & Jones, Bradley & Goos, Peter & Vandebroek, Martina, 2009. "An Efficient Algorithm for Constructing Bayesian Optimal Choice Designs," Journal of Business & Economic Statistics, American Statistical Association, vol. 27(2), pages 279-291.
    2. Train,Kenneth E., 2009. "Discrete Choice Methods with Simulation," Cambridge Books, Cambridge University Press, number 9780521766555.
    3. King E.N. & Ryan T.P., 2002. "A Preliminary Investigation of Maximum Likelihood Logistic Regression versus Exact Logistic Regression," The American Statistician, American Statistical Association, vol. 56, pages 163-170, August.
    4. Kessels, Roselinde & Goos, Peter & Vandebroek, Martina, 2008. "Optimal designs for conjoint experiments," Computational Statistics & Data Analysis, Elsevier, vol. 52(5), pages 2369-2387, January.
    5. Beggs, S. & Cardell, S. & Hausman, J., 1981. "Assessing the potential demand for electric cars," Journal of Econometrics, Elsevier, vol. 17(1), pages 1-19, September.
    6. Bull, Shelley B. & Mak, Carmen & Greenwood, Celia M. T., 2002. "A modified score function estimator for multinomial logistic regression in small samples," Computational Statistics & Data Analysis, Elsevier, vol. 39(1), pages 57-74, March.
    7. Peter J. Lenk & Wayne S. DeSarbo & Paul E. Green & Martin R. Young, 1996. "Hierarchical Bayes Conjoint Analysis: Recovery of Partworth Heterogeneity from Reduced Experimental Designs," Marketing Science, INFORMS, vol. 15(2), pages 173-191.
    8. Theodoros Evgeniou & Massimiliano Pontil & Olivier Toubia, 2007. "A Convex Optimization Approach to Modeling Consumer Heterogeneity in Conjoint Estimation," Marketing Science, INFORMS, vol. 26(6), pages 805-818, 11-12.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. KUPFER, Franziska & KESSELS, Roselinde & GOOS, Peter & VAN DE VOORDE, Eddy & VERHETSEL, Ann, 2013. "A discrete choice approach for analysing the airport choice for freighter operations in Europe," Working Papers 2013028, University of Antwerp, Faculty of Business and Economics.
    2. Kupfer, Franziska & Kessels, Roselinde & Goos, Peter & Van de Voorde, Eddy & Verhetsel, Ann, 2016. "The origin–destination airport choice for all-cargo aircraft operations in Europe," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 87(C), pages 53-74.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kessels, Roselinde & Jones, Bradley & Goos, Peter, 2019. "Using Firth's method for model estimation and market segmentation based on choice data," Journal of choice modelling, Elsevier, vol. 31(C), pages 1-21.
    2. Frischknecht, Bart D. & Eckert, Christine & Geweke, John & Louviere, Jordan J., 2014. "A simple method for estimating preference parameters for individuals," International Journal of Research in Marketing, Elsevier, vol. 31(1), pages 35-48.
    3. Yu, Jie & Goos, Peter & Vandebroek, Martina, 2011. "Individually adapted sequential Bayesian conjoint-choice designs in the presence of consumer heterogeneity," International Journal of Research in Marketing, Elsevier, vol. 28(4), pages 378-388.
    4. Hein, Maren & Goeken, Nils & Kurz, Peter & Steiner, Winfried J., 2022. "Using Hierarchical Bayes draws for improving shares of choice predictions in conjoint simulations: A study based on conjoint choice data," European Journal of Operational Research, Elsevier, vol. 297(2), pages 630-651.
    5. Andreas Falke & Harald Hruschka, 2017. "Setting prices in mixed logit model designs," Marketing Letters, Springer, vol. 28(1), pages 139-154, March.
    6. Crabbe, M. & Vandebroek, M., 2012. "Improving the efficiency of individualized designs for the mixed logit choice model by including covariates," Computational Statistics & Data Analysis, Elsevier, vol. 56(6), pages 2059-2072.
    7. Palhazi Cuervo, Daniel & Kessels, Roselinde & Goos, Peter & Sörensen, Kenneth, 2016. "An integrated algorithm for the optimal design of stated choice experiments with partial profiles," Transportation Research Part B: Methodological, Elsevier, vol. 93(PA), pages 648-669.
    8. Andreas Falke & Harald Hruschka, 2017. "A Monte Carlo study of design-generating algorithms for the latent class mixed logit model," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 39(4), pages 1035-1053, October.
    9. Lee, Ungki & Kang, Namwoo & Lee, Ikjin, 2020. "Choice data generation using usage scenarios and discounted cash flow analysis," Journal of choice modelling, Elsevier, vol. 37(C).
    10. Verhetsel, Ann & Kessels, Roselinde & Goos, Peter & Zijlstra, Toon & Blomme, Nele & Cant, Jeroen, 2015. "Location of logistics companies: a stated preference study to disentangle the impact of accessibility," Journal of Transport Geography, Elsevier, vol. 42(C), pages 110-121.
    11. Hein, Maren & Kurz, Peter & Steiner, Winfried J., 2019. "On the effect of HB covariance matrix prior settings: A simulation study," Journal of choice modelling, Elsevier, vol. 31(C), pages 51-72.
    12. Yu, Jie & Goos, Peter & Vandebroek, Martina, 2010. "Comparing different sampling schemes for approximating the integrals involved in the efficient design of stated choice experiments," Transportation Research Part B: Methodological, Elsevier, vol. 44(10), pages 1268-1289, December.
    13. Falke Andreas & Hruschka Harald, 2016. "A Monte Carlo Study of Design Procedures for the Semi-parametric Mixed Logit Model," Review of Marketing Science, De Gruyter, vol. 14(1), pages 21-67, June.
    14. Bart Vermeulen & Peter Goos & Riccardo Scarpa & Martina Vandebroek, 2011. "Bayesian Conjoint Choice Designs for Measuring Willingness to Pay," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 48(1), pages 129-149, January.
    15. John M. Rose & Michiel C.J. Bliemer, 2014. "Stated choice experimental design theory: the who, the what and the why," Chapters, in: Stephane Hess & Andrew Daly (ed.), Handbook of Choice Modelling, chapter 7, pages 152-177, Edward Elgar Publishing.
    16. Richard G. Newell & Juha Siikamäki, 2014. "Nudging Energy Efficiency Behavior: The Role of Information Labels," Journal of the Association of Environmental and Resource Economists, University of Chicago Press, vol. 1(4), pages 555-598.
    17. Mandys, F., 2021. "Electric vehicles and consumer choices," Renewable and Sustainable Energy Reviews, Elsevier, vol. 142(C).
    18. Kwon, Yeongmin & Son, Sanghoon & Jang, Kitae, 2018. "Evaluation of incentive policies for electric vehicles: An experimental study on Jeju Island," Transportation Research Part A: Policy and Practice, Elsevier, vol. 116(C), pages 404-412.
    19. Burmester, Alexa B. & Eggers, Felix & Clement, Michel & Prostka, Tim, 2016. "Accepting or fighting unlicensed usage: Can firms reduce unlicensed usage by optimizing their timing and pricing strategies?," International Journal of Research in Marketing, Elsevier, vol. 33(2), pages 343-356.
    20. Burt, Zachary & Njee, Robert M. & Mbatia, Yolanda & Msimbe, Veritas & Brown, Joe & Clasen, Thomas F. & Malebo, Hamisi M. & Ray, Isha, 2017. "User preferences and willingness to pay for safe drinking water: Experimental evidence from rural Tanzania," Social Science & Medicine, Elsevier, vol. 173(C), pages 63-71.

    More about this item

    Keywords

    Discrete choice modeling; Firth's bias adjustment; Penalized maximum likelihood; Individual-level estimates; Data separation;
    All these keywords.

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ant:wpaper:2013013. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Joeri Nys (email available below). General contact details of provider: https://edirc.repec.org/data/ftufsbe.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.