IDEAS home Printed from
   My bibliography  Save this paper

Well-to-Wheels Energy and Greenhouse Gas Emission Results and Issues of Fuel Ethanol


  • Wang, Michael Q.


The use of fuel ethanol in the United States has increased from fewer than 200 million gallons (gal) at the beginning of the US fuel ethanol program in 1980 to 6.5 billion gal in 2007. The recent federally adopted Energy Independence and Security Act of 2007 established the goal of 36 billion gal of biofuel use in the United States by 2022, of which 15 billion gal will be corn-based ethanol. In addition, the promotion of low-carbon fuel standards (LCFS) by California and several other states could help increased use of ethanol, especially cellulosic ethanol. In the United States, corn ethanol is produced through the fermentation of corn in dry and wet milling plants, most of which are located in the Midwest. In 2006, about 82% of the total US fuel ethanol was produced from dry milling plants, and the remaining 18% from wet milling plants (Renewable Fuels Association, 2007). Ethanol can be produced from cellulosic biomass through fermentation of cellulose and semicellulose. The US Department of Energy (DOE) has been undertaking extensive research and development (R&D) efforts for cellulosic ethanol technologies. Since 1997, Argonne National Laboratory has been evaluating the energy and emission effects of fuel ethanol relative to those of petroleum gasoline. In 1997, Argonne National Laboratory published its findings from an ethanol analysis conducted for the State of Illinois (Wang et al., 1997). With DOE support, Argonne National Laboratory has continued its efforts to analyze the effects of fuel ethanol (Wang et al., 1999a,b; Wang et al., 2003; Wu et al., 2005; and Wu et al., 2006). As fuel ethanol production and usage in the United States have rapidly expanded in the past several years, corn ethanol plant technologies have been evolving. In addition, while corn yield per acre continues to increase, concerns have been raised that increased corn farming could result in switches in crop farming in the United States and potential land use changes in other countries. These factors together could cause different energy and greenhouse gas (GHG) emission results for corn ethanol. This chapter presents Argonne National Laboratory’s updated energy and GHG emission results for fuel ethanol.

Suggested Citation

  • Wang, Michael Q., 2008. "Well-to-Wheels Energy and Greenhouse Gas Emission Results and Issues of Fuel Ethanol," Lifecycle Carbon Footprint of Biofuels Workshop, January 29, 2008, Miami Beach, Florida 49098, Farm Foundation.
  • Handle: RePEc:ags:fflc08:49098

    Download full text from publisher

    File URL:
    Download Restriction: no

    References listed on IDEAS

    1. Searchinger, Timothy & Heimlich, Ralph & Houghton, R. A. & Dong, Fengxia & Elobeid, Amani & Fabiosa, Jacinto F. & Tokgoz, Simla & Hayes, Dermot J. & Yu, Hun-Hsiang, 2008. "Use of U.S. Croplands for Biofuels Increases Greenhouse Gases Through Emissions from Land-Use Change," Staff General Research Papers Archive 12881, Iowa State University, Department of Economics.
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Wang, Michael & Huo, Hong & Arora, Salil, 2011. "Methods of dealing with co-products of biofuels in life-cycle analysis and consequent results within the U.S. context," Energy Policy, Elsevier, vol. 39(10), pages 5726-5736, October.
    2. James M. Griffin, 2013. "U.S. Ethanol Policy: Time to Reconsider?," The Energy Journal, International Association for Energy Economics, vol. 0(Number 4).
    3. Jensen, Kimberly L. & Clark, Christopher D. & English, Burton C. & Menard, R. Jamey & Skahan, Denise K. & Marra, Adrienne C., 2010. "Willingness to pay for E85 from corn, switchgrass, and wood residues," Energy Economics, Elsevier, vol. 32(6), pages 1253-1262, November.

    More about this item


    Environmental Economics and Policy;

    NEP fields

    This paper has been announced in the following NEP Reports:


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ags:fflc08:49098. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (AgEcon Search). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.