IDEAS home Printed from https://ideas.repec.org/p/ags/cmpart/117803.html
   My bibliography  Save this paper

Potential Economic Value Of Carbon Sequestration In Kakamega Forest And Surrounding Farms

Author

Listed:
  • Jepkemei, Busienei Vivian

Abstract

Experts generally agree that increased concentrations of greenhouse gases (GHGs) in the atmosphere will result in changes in the earth‘s climate. Increased attention by policy makers to this threat of global climate change has brought with it considerable attention to the possibility of using forests as a means of sequestering and reducing emissions of carbon dioxide in the atmosphere. As globally important storehouses of carbon, forests play a critical role in influencing the Earth's climate. Reducing GHGs can be achieved by controlling and avoiding land use changes. In many parts of the world, forests are being rapidly cleared for agriculture or pasture, destructively logged, and degraded by human-set fires. When forests are degraded or cleared, their stored carbon is released back to the atmosphere during harvest and through respiration, thus these forests are net contributors of carbon to the atmosphere. Forestry is an important sector in Kenya. The long term development of the forestry sector will definitely affect the future amounts of carbon sequestration and emission of the country. The purpose of this study was to provide an understanding of the role that Kakamega forest can play in the mitigation of climate change through carbon sequestration. It evaluates potential economic value of carbon sequestration of Kakamega forest as well as the potential of the forest to participate in carbon trading. In addition, the study investigated the status of the carbon stock in the forest, based on the biomass stock. The study adopted the tobit model to estimate the determinants of the total amount carbon that can be sequestered by trees in farms. The study confirms the huge atmospheric CO2 that can be offset by the Kakamega forest, indicating the potential of Kenya to participate in carbon trading for both its economic and environmental benefit. The results further indicate that the major determinants of the amount of carbon that can be sequestered by trees in farms are the sex of the respondent, position of the respondent in the household, source of income, tenure status of the farm, and perception on whether trees can reduce global warming. The results of the study can expedite policy decisions regarding Kenya‘s participation in carbon trading through the Clean Development Mechanism (CDM) as well as providing benefits to the national forestry sector, as well as the private owners and participants in the community forestry, in terms of an overall increase in income, and achieving self-sufficiency.

Suggested Citation

  • Jepkemei, Busienei Vivian, 2010. "Potential Economic Value Of Carbon Sequestration In Kakamega Forest And Surrounding Farms," Research Theses 117803, Collaborative Masters Program in Agricultural and Applied Economics.
  • Handle: RePEc:ags:cmpart:117803
    DOI: 10.22004/ag.econ.117803
    as

    Download full text from publisher

    File URL: https://ageconsearch.umn.edu/record/117803/files/Vivian%20Busienei%20Thesis.pdf
    Download Restriction: no

    File URL: https://libkey.io/10.22004/ag.econ.117803?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Peter J. Parks & Ian W. Hardie, 1995. "Least-Cost Forest Carbon Reserves: Cost-Effective Subsidies to Convert Marginal Agricultural Land to Forests," Land Economics, University of Wisconsin Press, vol. 71(1), pages 122-136.
    2. Richard Tol, 2002. "Estimates of the Damage Costs of Climate Change. Part 1: Benchmark Estimates," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 21(1), pages 47-73, January.
    3. Robert Mendelsohn & Larry Williams, 2004. "Comparing Forecasts of the Global Impacts of Climate Change," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 9(4), pages 315-333, October.
    4. Brent Sohngen & Robert Mendelsohn, 2003. "An Optimal Control Model of Forest Carbon Sequestration," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 85(2), pages 448-457.
    5. J. Callaway & Bruce McCarl, 1996. "The economic consequences of substituting carbon payments for crop subsidies in U.S. agriculture," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 7(1), pages 15-43, January.
    6. Feng, Hongli & Zhao, Jinhua & Kling, Catherine L., 2001. "Carbon: The next big cash crop?," Choices: The Magazine of Food, Farm, and Resource Issues, Agricultural and Applied Economics Association, vol. 16(2), pages 1-4.
    7. Robert N. Stavins, 1999. "The Costs of Carbon Sequestration: A Revealed-Preference Approach," American Economic Review, American Economic Association, vol. 89(4), pages 994-1009, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zohreh MOHAMMADI & Soleiman MOHAMMADI LIMAEI & Peter LOHMANDER & Leif OLSSON, 2017. "Estimating the aboveground carbon sequestration and its economic value (case study: Iranian Caspian forests)," Journal of Forest Science, Czech Academy of Agricultural Sciences, vol. 63(11), pages 511-518.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. van Kooten, G. Cornelis & Sohngen, Brent, 2007. "Economics of Forest Ecosystem Carbon Sinks: A Review," International Review of Environmental and Resource Economics, now publishers, vol. 1(3), pages 237-269, September.
    2. G. Cornelis van Kooten & Susanna Laaksonen-Craig & Yichuan Wang, 2007. "Costs of Creating Carbon Offset Credits via Forestry Activities: A Meta-Regression Analysis," Working Papers 2007-03, University of Victoria, Department of Economics, Resource Economics and Policy Analysis Research Group.
    3. Robert N. Stavins, 1998. "A Methodological Investigation of the Costs of Carbon Sequestration," Journal of Applied Economics, Taylor & Francis Journals, vol. 1(2), pages 231-277, November.
    4. Jung, Martina, 2003. "The Role of Forestry Sinks in the CDM - Analysing the Effects of Policy Decisions on the Carbon Market," Discussion Paper Series 26293, Hamburg Institute of International Economics.
    5. Ovchinnikova, Natalia & Lynne, Gary D. & Sautter, John & Kruse, Colby, 2006. "What motivates farmers to sequester carbon: an empirical investigation," 2006 Annual meeting, July 23-26, Long Beach, CA 21288, American Agricultural Economics Association (New Name 2008: Agricultural and Applied Economics Association).
    6. van Kooten, G. Cornelis & Eagle, Alison J. & Manley, James G. & Smolak, Tara M., 2004. "How Costly Are Carbon Offsets? A Meta-Analysis Of Carbon Forest Sinks," Working Papers 18166, University of Victoria, Resource Economics and Policy.
    7. Latta, Gregory & Adams, Darius M. & Alig, Ralph J. & White, Eric, 2011. "Simulated effects of mandatory versus voluntary participation in private forest carbon offset markets in the United States," Journal of Forest Economics, Elsevier, vol. 17(2), pages 127-141, April.
    8. Pablo C. Benítez & Timo Kuosmanen & Roland Olschewski & G. Cornelis van Kooten, 2006. "Conservation Payments under Risk: A Stochastic Dominance Approach," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 88(1), pages 1-15.
    9. Michetti, Melania & Rosa, Renato, 2012. "Afforestation and timber management compliance strategies in climate policy. A computable general equilibrium analysis," Ecological Economics, Elsevier, vol. 77(C), pages 139-148.
    10. Newell, Richard G. & Stavins, Robert N., 2000. "Climate Change and Forest Sinks: Factors Affecting the Costs of Carbon Sequestration," Journal of Environmental Economics and Management, Elsevier, vol. 40(3), pages 211-235, November.
    11. Im, Eun Ho & Adams, Darius M. & Latta, Gregory S., 2007. "Potential impacts of carbon taxes on carbon flux in western Oregon private forests," Forest Policy and Economics, Elsevier, vol. 9(8), pages 1006-1017, May.
    12. Lubowski, Ruben N. & Plantinga, Andrew J. & Stavins, Robert N., 2006. "Land-use change and carbon sinks: Econometric estimation of the carbon sequestration supply function," Journal of Environmental Economics and Management, Elsevier, vol. 51(2), pages 135-152, March.
    13. Lehtonen, Heikki & Peltola, Jukka & Sinkkonen, Marko, 2006. "Co-effects of climate policy and agricultural policy on regional agricultural viability in Finland," Agricultural Systems, Elsevier, vol. 88(2-3), pages 472-493, June.
    14. Benitez, Pablo C. & Obersteiner, Michael, 2006. "Site identification for carbon sequestration in Latin America: A grid-based economic approach," Forest Policy and Economics, Elsevier, vol. 8(6), pages 636-651, August.
    15. Kim, Taeyoung & Langpap, Christian, 2016. "Agricultural landowners’ response to incentives for afforestation," Resource and Energy Economics, Elsevier, vol. 43(C), pages 93-111.
    16. Stavins, Robert & Plantinga, Andrew & Lubowski, Ruben, 2005. "Land-Use Change and Carbon Sinks," RFF Working Paper Series dp-05-04, Resources for the Future.
    17. Monge, Juan J. & Bryant, Henry L. & Gan, Jianbang & Richardson, James W., 2016. "Land use and general equilibrium implications of a forest-based carbon sequestration policy in the United States," Ecological Economics, Elsevier, vol. 127(C), pages 102-120.
    18. Charles A. Zelek & Gerald E. Shively, 2003. "Measuring the Opportunity Cost of Carbon Sequestration in Tropical Agriculture," Land Economics, University of Wisconsin Press, vol. 79(3), pages 342-354.
    19. Asbjørn Aaheim & Rajiv Chaturvedi & Anitha Sagadevan, 2011. "Integrated modelling approaches to analysis of climate change impacts on forests and forest management," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 16(2), pages 247-266, February.
    20. Melania Michetti & Ramiro Parrado, 2012. "Improving Land-use Modelling within CGE to Assess Forest-based Mitigation Potential and Costs," Working Papers 2012.19, Fondazione Eni Enrico Mattei.

    More about this item

    Keywords

    Environmental Economics and Policy;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ags:cmpart:117803. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: AgEcon Search (email available below). General contact details of provider: http://www.agriculturaleconomics.net .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.