IDEAS home Printed from https://ideas.repec.org/p/ags/aaea22/322163.html
   My bibliography  Save this paper

Aligning Values to Labels: A Best-Worst Analysis of Food Labels

Author

Listed:
  • McLeod, Alexandria N.
  • Yang, Wei
  • Fang, Di
  • Nayga, Rodolfo M. Jr.

Abstract

Consumer misperception and misinterpretation of food labels can lead to consumers not buying a product or purchasing products that do not align with their environmental or sustainability interests. Consumer purchasing behavior can be explained by looking at consumer food values or food quality attributes. This study aimed to (a) determine the effect label information has on consumer preference shares for selected sustainability-related food labels and (b) if correlations exist between food labels and food values. To the best of our knowledge, this is the first study to examine the comprehension of 12 different labels and identify how food labels relate to food value preferences. Responses from the best-worst scaling experiment of food value and environmental food label choice sets were analyzed using the random parameter logit model. Results reveal preference shares changed for each label as more information was provided to the respondents about the various labels included in the study. These findings should support food policy efforts requiring strict, clear label standards. Food labels should represent the food’s core food values to increase consumer preference for the product. These findings also further support the need for efforts to increase consumer knowledge and understanding of the labels on food packaging.
(This abstract was borrowed from another version of this item.)

Suggested Citation

  • McLeod, Alexandria N. & Yang, Wei & Fang, Di & Nayga, Rodolfo M. Jr., 2022. "Aligning Values to Labels: A Best-Worst Analysis of Food Labels," 2024 Annual Meeting, July 28-30, New Orleans, LA 322163, Agricultural and Applied Economics Association.
  • Handle: RePEc:ags:aaea22:322163
    DOI: 10.22004/ag.econ.322163
    as

    Download full text from publisher

    File URL: https://ageconsearch.umn.edu/record/322163/files/22699.pdf
    Download Restriction: no

    File URL: https://libkey.io/10.22004/ag.econ.322163?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. D. Fang & R. M. Nayga & H. A. Snell & G. H. West & C. Bazzani, 2019. "Evaluating USA’s New Nutrition and Supplement Facts Label: Evidence from a Non-hypothetical Choice Experiment," Journal of Consumer Policy, Springer, vol. 42(4), pages 545-562, December.
    2. David Revelt & Kenneth Train, 1998. "Mixed Logit With Repeated Choices: Households' Choices Of Appliance Efficiency Level," The Review of Economics and Statistics, MIT Press, vol. 80(4), pages 647-657, November.
    3. Flynn, Terry N. & Louviere, Jordan J. & Peters, Tim J. & Coast, Joanna, 2007. "Best-worst scaling: What it can do for health care research and how to do it," Journal of Health Economics, Elsevier, vol. 26(1), pages 171-189, January.
    4. Pat Auger & Timothy Devinney & Jordan Louviere, 2007. "Using Best–Worst Scaling Methodology to Investigate Consumer Ethical Beliefs Across Countries," Journal of Business Ethics, Springer, vol. 70(3), pages 299-326, February.
    5. Danny Campbell & Seda Erdem, 2015. "Position Bias in Best-worst Scaling Surveys: A Case Study on Trust in Institutions," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 97(2), pages 526-545.
    6. Lydia Zepeda & Lucie Sirieix & Ana Pizarro & François Coderre & Francine Rodier, 2013. "A conceptual framework for analyzing consumers’ food label preferences: an exploratory study of sustainability labels in France, Quebec, Spain and the US," Post-Print hal-02650512, HAL.
    7. Daniel McFadden & Kenneth Train, 2000. "Mixed MNL models for discrete response," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 15(5), pages 447-470.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Erdem, Seda & Rigby, Dan & Wossink, Ada, 2012. "Using best–worst scaling to explore perceptions of relative responsibility for ensuring food safety," Food Policy, Elsevier, vol. 37(6), pages 661-670.
    2. Muunda, Emmanuel & Mtimet, Nadhem & Schneider, Franziska & Wanyoike, Francis & Dominguez-Salas, Paula & Alonso, Silvia, 2021. "Could the new dairy policy affect milk allocation to infants in Kenya? A best-worst scaling approach," Food Policy, Elsevier, vol. 101(C).
    3. Erdem, Seda & Rigby, Dan, 2011. "Using Best Worst Scaling To Investigate Perceptions Of Control & Concern Over Food And Non-Food Risks," 85th Annual Conference, April 18-20, 2011, Warwick University, Coventry, UK 108790, Agricultural Economics Society.
    4. Boaitey, Albert K. & Lai, Yufeng, 2021. "Do Consumers Care About Early Calf-Mother Separation An Application Of Best Worst Scoring To Milk Choice," 2021 Annual Meeting, August 1-3, Austin, Texas 313991, Agricultural and Applied Economics Association.
    5. Shaosheng Jin & Rao Yuan & Yan Zhang & Xin Jin, 2019. "Chinese Consumers’ Preferences for Attributes of Fresh Milk: A Best–Worst Approach," IJERPH, MDPI, vol. 16(21), pages 1-16, November.
    6. Lancsar, Emily & Louviere, Jordan & Donaldson, Cam & Currie, Gillian & Burgess, Leonie, 2013. "Best worst discrete choice experiments in health: Methods and an application," Social Science & Medicine, Elsevier, vol. 76(C), pages 74-82.
    7. Haghani, Milad & Bliemer, Michiel C.J. & Hensher, David A., 2021. "The landscape of econometric discrete choice modelling research," Journal of choice modelling, Elsevier, vol. 40(C).
    8. Yoo, Hong Il & Doiron, Denise, 2013. "The use of alternative preference elicitation methods in complex discrete choice experiments," Journal of Health Economics, Elsevier, vol. 32(6), pages 1166-1179.
    9. Ortega, David L. & Wang, H. Holly & Wu, Laping & Hong, Soo Jeong, 2015. "Retail channel and consumer demand for food quality in China," China Economic Review, Elsevier, vol. 36(C), pages 359-366.
    10. Fosgerau, Mogens & Bierlaire, Michel, 2007. "A practical test for the choice of mixing distribution in discrete choice models," Transportation Research Part B: Methodological, Elsevier, vol. 41(7), pages 784-794, August.
    11. Paleti, Rajesh, 2018. "Generalized multinomial probit Model: Accommodating constrained random parameters," Transportation Research Part B: Methodological, Elsevier, vol. 118(C), pages 248-262.
    12. Atallah, Shadi S. & Huang, Ju-Chin & Leahy, Jessica & Bennett, Karen, 2020. "Preference Heterogeneity and Neighborhood Effect in Invasive Species Control: The Case of Glossy Buckthorn in New Hampshire and Maine Forests," 2020 Annual Meeting, July 26-28, Kansas City, Missouri 304623, Agricultural and Applied Economics Association.
    13. Bonnet, Céline & Réquillart, Vincent, 2023. "The effects of taxation on the individual consumption of sugar-sweetened beverages," Economics & Human Biology, Elsevier, vol. 51(C).
    14. Frick, Bernd & Barros, Carlos Pestana & Prinz, Joachim, 2010. "Analysing head coach dismissals in the German "Bundesliga" with a mixed logit approach," European Journal of Operational Research, Elsevier, vol. 200(1), pages 151-159, January.
    15. Stefano Ceolotto & Eleanor Denny, 2021. "Putting a new 'spin' on energy labels: measuring the impact of reframing energy efficiency on tumble dryer choices in a multi-country experiment," Trinity Economics Papers tep1521, Trinity College Dublin, Department of Economics.
    16. Epstein, Andrew J., 2010. "Effects of report cards on referral patterns to cardiac surgeons," Journal of Health Economics, Elsevier, vol. 29(5), pages 718-731, September.
    17. Ivan Tzintzun & Jonathan Sicsic & Lise Rochaix, 2023. "Into the Far West? Investigating Health Policy-Makers' Willingness to Adopt Decrementally Cost-Effective Innovations Using a DCE Approach," PSE Working Papers halshs-04154933, HAL.
    18. Huse, Cristian & Lucinda, Claudio & Cardoso, Andre Ribeiro, 2020. "Consumer response to energy label policies: Evidence from the Brazilian energy label program," Energy Policy, Elsevier, vol. 138(C).
    19. Ju-Hee Kim & Younggew Kim & Seung-Hoon Yoo, 2021. "Using a choice experiment to explore the public willingness to pay for the impacts of improving energy efficiency of an apartment," Quality & Quantity: International Journal of Methodology, Springer, vol. 55(5), pages 1775-1793, October.
    20. Tong Wu & Shida Rastegari Henneberry & John N. Ng’ombe & Richard T. Melstrom, 2020. "Chinese Demand for Agritourism in Rural America," Sustainability, MDPI, vol. 12(7), pages 1-11, April.

    More about this item

    Keywords

    ;
    ;
    ;

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ags:aaea22:322163. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: AgEcon Search (email available below). General contact details of provider: https://edirc.repec.org/data/aaeaaea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.