IDEAS home Printed from https://ideas.repec.org/p/ags/aaea12/124759.html
   My bibliography  Save this paper

When do the USDA forecasters make mistakes?

Author

Listed:
  • Isengildina-Massa, Olga
  • Karali, Berna
  • Irwin, Scott H.

Abstract

This study analysed forecasts for all US corn, soya bean and wheat categories published within the World Agricultural Supply and Demand Estimates (WASDE ) reports over the 1987/88 through 2009/10 marketing years in an attempt to identify patterns and better understand when the USDA forecasters make mistakes. Two general sources of errors were investigated: behavioural and macroeconomic factors. The first objective was to examine how these factors affect the size of the forecast error and the second concentrated on the direction of the error due to these effects. Our findings suggest that the largest increase in the size of USDA forecast errors was associated with structural changes in commodity markets that took place in the mid-2000s. Corn, soya bean and wheat forecast errors also grew during the periods of economic growth and with changes in exchange rates, while inflation and changes in oil price had a much smaller impact. With respect to behavioural sources, we identified patterns consistent with leniency and pessimism across different categories. Predictability of forecast errors based on the information available at the time the forecasts are made provides evidence of inefficiency and suggests that these forecasts may be improved using the findings of this study.
(This abstract was borrowed from another version of this item.)

Suggested Citation

  • Isengildina-Massa, Olga & Karali, Berna & Irwin, Scott H., "undated". "When do the USDA forecasters make mistakes?," 2012 Annual Meeting, August 12-14, 2012, Seattle, Washington 124759, Agricultural and Applied Economics Association.
  • Handle: RePEc:ags:aaea12:124759
    DOI: 10.22004/ag.econ.124759
    as

    Download full text from publisher

    File URL: https://ageconsearch.umn.edu/record/124759/files/When%20forecasters%20make%20mistakes_AAEA_2012.pdf
    Download Restriction: no

    File URL: https://libkey.io/10.22004/ag.econ.124759?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Jerker Denrell & Christina Fang, 2010. "Predicting the Next Big Thing: Success as a Signal of Poor Judgment," Management Science, INFORMS, vol. 56(10), pages 1653-1667, October.
    2. Amir, Eli & Ganzach, Yoav, 1998. "Overreaction and underreaction in analysts' forecasts," Journal of Economic Behavior & Organization, Elsevier, vol. 37(3), pages 333-347, November.
    3. Jacob A. Mincer, 1969. "Economic Forecasts and Expectations: Analysis of Forecasting Behavior and Performance," NBER Books, National Bureau of Economic Research, Inc, number minc69-1, March.
    4. Mallory, Mindy L. & Irwin, Scott H. & Hayes, Dermot J., 2012. "How market efficiency and the theory of storage link corn and ethanol markets," Energy Economics, Elsevier, vol. 34(6), pages 2157-2166.
    5. Mallory, Mindy L. & Irwin, Scott H. & Hayes, Dermot J., 2012. "How Market Efficiency and the Theory of Storage Link Corn and Ethanol Markets Energy Economics," ISU General Staff Papers 201211010700001537, Iowa State University, Department of Economics.
    6. Berna Karali & Walter N. Thurman, 2009. "Announcement effects and the theory of storage: an empirical study of lumber futures," Agricultural Economics, International Association of Agricultural Economists, vol. 40(4), pages 421-436, July.
    7. Olga Isengildina & Scott H. Irwin & Darrel L. Good, 2006. "Are Revisions to USDA Crop Production Forecasts Smoothed?," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 88(4), pages 1091-1104.
    8. Fildes, Robert & Stekler, Herman, 2002. "The state of macroeconomic forecasting," Journal of Macroeconomics, Elsevier, vol. 24(4), pages 435-468, December.
    9. Nordhaus, William D, 1987. "Forecasting Efficiency: Concepts and Applications," The Review of Economics and Statistics, MIT Press, vol. 69(4), pages 667-674, November.
    10. Ashiya, Masahiro, 2003. "Testing the rationality of Japanese GDP forecasts: the sign of forecast revision matters," Journal of Economic Behavior & Organization, Elsevier, vol. 50(2), pages 263-269, February.
    11. Fildes, Robert & Stekler, Herman, 2002. "Reply to the comments on 'The state of macroeconomic forecasting'," Journal of Macroeconomics, Elsevier, vol. 24(4), pages 503-505, December.
    12. Beck, Nathaniel & Katz, Jonathan N., 1995. "What To Do (and Not to Do) with Time-Series Cross-Section Data," American Political Science Review, Cambridge University Press, vol. 89(3), pages 634-647, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. MacDonald, Stephen & Ash, Mark & Cooke, Bryce, 2017. "The Evolution of Inefficiency in USDA’s Forecasts of U.S. and World Soybean Markets," MPRA Paper 87545, University Library of Munich, Germany.
    2. Bahram Sanginabadi, 2018. "USDA Forecasts: A meta-analysis study," Papers 1801.06575, arXiv.org.
    3. Tianyang Zhang & Ziran Li, 2022. "Can a rational expectation storage model explain the USDA ending grain stocks forecast errors?," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 42(3), pages 313-337, March.
    4. Zhang, Tianyang & Li, Ziran, "undated". "How Well Do Rational Expectations Storage Model Forecast Crop Ending Stocks?," 2018 Annual Meeting, August 5-7, Washington, D.C. 273803, Agricultural and Applied Economics Association.
    5. Li, Ziran & Li, Ding & Zhang, Tengfei & Zhang, Tianyang, 2022. "Climate impact on the USDA ending stocks forecast errors," Finance Research Letters, Elsevier, vol. 48(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xie, Zixiong & Hsu, Shih-Hsun, 2016. "Time varying biases and the state of the economy," International Journal of Forecasting, Elsevier, vol. 32(3), pages 716-725.
    2. Chang, Chia-Lin & de Bruijn, Bert & Franses, Philip Hans & McAleer, Michael, 2013. "Analyzing fixed-event forecast revisions," International Journal of Forecasting, Elsevier, vol. 29(4), pages 622-627.
    3. Ericsson, Neil R., 2016. "Eliciting GDP forecasts from the FOMC’s minutes around the financial crisis," International Journal of Forecasting, Elsevier, vol. 32(2), pages 571-583.
    4. Döpke, Jörg & Fritsche, Ulrich & Müller, Karsten, 2019. "Has macroeconomic forecasting changed after the Great Recession? Panel-based evidence on forecast accuracy and forecaster behavior from Germany," Journal of Macroeconomics, Elsevier, vol. 62(C).
    5. Jörg Döpke & Ulrich Fritsche & Karsten Müller, 2018. "Has Macroeconomic Forecasting changed after the Great Recession? - Panel-based Evidence on Accuracy and Forecaster Behaviour from Germany," Macroeconomics and Finance Series 201803, University of Hamburg, Department of Socioeconomics.
    6. Constantin Burgi, 2016. "What Do We Lose When We Average Expectations?," Working Papers 2016-013, The George Washington University, The Center for Economic Research.
    7. Ulrich Fritsche & Artur Tarassow, 2017. "Vergleichende Evaluation der Konjunkturprognosen des Instituts für Makroökonomie und Konjunkturforschung an der Hans-Böckler-Stiftung für den Zeitraum 2005-2014," IMK Studies 54-2017, IMK at the Hans Boeckler Foundation, Macroeconomic Policy Institute.
    8. Karsten Müller, 2022. "German forecasters’ narratives: How informative are German business cycle forecast reports?," Empirical Economics, Springer, vol. 62(5), pages 2373-2415, May.
    9. Etienne, Xiaoli L., 2015. "Financialization of Agricultural Commodity Markets: Do Financial Data Help to Forecast Agricultural Prices?," 2015 AAEA & WAEA Joint Annual Meeting, July 26-28, San Francisco, California 205124, Agricultural and Applied Economics Association.
    10. Christophe Gouel, 2020. "The Value of Public Information in Storable Commodity Markets: Application to the Soybean Market," American Journal of Agricultural Economics, John Wiley & Sons, vol. 102(3), pages 846-865, May.
    11. Christiane Baumeister & Reinhard Ellwanger & Lutz Kilian, 2016. "Did the Renewable Fuel Standard Shift Market Expectations of the Price of Ethanol?," CESifo Working Paper Series 6282, CESifo.
    12. Yip, Pick Schen & Brooks, Robert & Do, Hung Xuan & Nguyen, Duc Khuong, 2020. "Dynamic volatility spillover effects between oil and agricultural products," International Review of Financial Analysis, Elsevier, vol. 69(C).
    13. repec:isu:genstf:201501010800005371 is not listed on IDEAS
    14. Joseph P Byrne & Ryuta Sakemoto & Bing Xu, 2020. "Commodity price co-movement: heterogeneity and the time-varying impact of fundamentals [Oil price shocks and the stock market: evidence from Japan]," European Review of Agricultural Economics, Oxford University Press and the European Agricultural and Applied Economics Publications Foundation, vol. 47(2), pages 499-528.
    15. Christiane Baumeister & Lutz Kilian, 2014. "Do oil price increases cause higher food prices? [Biofuels, binding constraints, and agricultural commodity price volatility]," Economic Policy, CEPR, CESifo, Sciences Po;CES;MSH, vol. 29(80), pages 691-747.
    16. Peersman, Gert & Rüth, Sebastian K. & Van der Veken, Wouter, 2021. "The interplay between oil and food commodity prices: Has it changed over time?," Journal of International Economics, Elsevier, vol. 133(C).
    17. Sergio Adriani David & Claudio M. C. Inácio & José A. Tenreiro Machado, 2019. "Ethanol Prices and Agricultural Commodities: An Investigation of Their Relationship," Mathematics, MDPI, vol. 7(9), pages 1-25, August.
    18. Ghoddusi, Hamed, 2017. "Blending under uncertainty: Real options analysis of ethanol plants and biofuels mandates," Energy Economics, Elsevier, vol. 61(C), pages 110-120.
    19. Ahmadi, Maryam & Bashiri Behmiri, Niaz & Manera, Matteo, 2016. "How is volatility in commodity markets linked to oil price shocks?," Energy Economics, Elsevier, vol. 59(C), pages 11-23.
    20. Messina, Jeffrey D. & Sinclair, Tara M. & Stekler, Herman, 2015. "What can we learn from revisions to the Greenbook forecasts?," Journal of Macroeconomics, Elsevier, vol. 45(C), pages 54-62.
    21. Döpke Jörg & Fritsche Ulrich & Waldhof Gabi, 2019. "Theories, Techniques and the Formation of German Business Cycle Forecasts : Evidence from a survey of professional forecasters," Journal of Economics and Statistics (Jahrbuecher fuer Nationaloekonomie und Statistik), De Gruyter, vol. 239(2), pages 203-241, April.

    More about this item

    Keywords

    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ags:aaea12:124759. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: AgEcon Search (email available below). General contact details of provider: https://edirc.repec.org/data/aaeaaea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.