IDEAS home Printed from https://ideas.repec.org/a/wsi/serxxx/v63y2018i02ns0217590817400148.html
   My bibliography  Save this article

Cost-Effectiveness Analysis Of Electric Vehicles In Singapore

Author

Listed:
  • KAH-HUNG YUEN

    (Energy Studies Institute, National University of Singapore, 29 Heng Mui Keng Terrace, Block A #10-01, Singapore 119620, Singapore)

Abstract

As a compact city-state with a modern electricity grid and relatively clean energy sources, Singapore seems ideal for the deployment of the battery electric vehicle (BEV). A fleet of 89 BEVs were deployed in a test-bed that was concluded in 2013. The paper conducts a cost-effectiveness analysis and financial analysis of the Renault Fluence ZE and its comparable gasoline model to assess the economics of BEVs. It concludes that BEV adoption in Singapore is both undesirable (due to higher social costs) and unlikely (due to higher private costs) in the immediate and near future. Where 94% of the population live in high-rise apartments, there will be a heavy reliance on costlier communal charging stations, thereby mitigating the operating savings that BEVs could have offered if home chargers were used. Lifetime costs are not as sensitive to changes in oil prices as expected. For the BEV to be socially viable, the breakeven carbon price amounts to S$9,700 per tonne of CO2, which suggests that BEVs are not a cost-effective means of reducing carbon emissions in Singapore, or battery prices would need to be halved. Nevertheless, the study demonstrates that exempting the BEV batteries from taxation could support BEV adoption if that were to be a government objective.

Suggested Citation

  • Kah-Hung Yuen, 2018. "Cost-Effectiveness Analysis Of Electric Vehicles In Singapore," The Singapore Economic Review (SER), World Scientific Publishing Co. Pte. Ltd., vol. 63(02), pages 313-338, March.
  • Handle: RePEc:wsi:serxxx:v:63:y:2018:i:02:n:s0217590817400148
    DOI: 10.1142/S0217590817400148
    as

    Download full text from publisher

    File URL: http://www.worldscientific.com/doi/abs/10.1142/S0217590817400148
    Download Restriction: Access to full text is restricted to subscribers

    File URL: https://libkey.io/10.1142/S0217590817400148?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Tol, Richard S. J., 2005. "The marginal damage costs of carbon dioxide emissions: an assessment of the uncertainties," Energy Policy, Elsevier, vol. 33(16), pages 2064-2074, November.
    2. Fischer, Carolyn & Newell, Richard G., 2008. "Environmental and technology policies for climate mitigation," Journal of Environmental Economics and Management, Elsevier, vol. 55(2), pages 142-162, March.
    3. Offer, G.J. & Howey, D. & Contestabile, M. & Clague, R. & Brandon, N.P., 2010. "Comparative analysis of battery electric, hydrogen fuel cell and hybrid vehicles in a future sustainable road transport system," Energy Policy, Elsevier, vol. 38(1), pages 24-29, January.
    4. Rabl,Ari & Spadaro,Joseph V. & Holland,Mike, 2014. "How Much Is Clean Air Worth?," Cambridge Books, Cambridge University Press, number 9781107043138, October.
    5. Weiss, Martin & Patel, Martin K. & Junginger, Martin & Perujo, Adolfo & Bonnel, Pierre & van Grootveld, Geert, 2012. "On the electrification of road transport - Learning rates and price forecasts for hybrid-electric and battery-electric vehicles," Energy Policy, Elsevier, vol. 48(C), pages 374-393.
    6. Tan, Reginald B.H. & Wijaya, David & Khoo, Hsien H., 2010. "LCI (Life cycle inventory) analysis of fuels and electricity generation in Singapore," Energy, Elsevier, vol. 35(12), pages 4910-4916.
    7. Delucchi, Mark & Lipman, Timothy, 2001. "An Analysis of the Retail and Lifecycle Cost of Battery-Powered Electric Vehicles," Institute of Transportation Studies, Working Paper Series qt50q9060k, Institute of Transportation Studies, UC Davis.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Konstantina Anastasiadou, 2021. "Sustainable Mobility Driven Prioritization of New Vehicle Technologies, Based on a New Decision-Aiding Methodology," Sustainability, MDPI, vol. 13(9), pages 1-27, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hirte, Georg & Tscharaktschiew, Stefan, 2013. "The optimal subsidy on electric vehicles in German metropolitan areas: A spatial general equilibrium analysis," Energy Economics, Elsevier, vol. 40(C), pages 515-528.
    2. Sykes, Maxwell & Axsen, Jonn, 2017. "No free ride to zero-emissions: Simulating a region's need to implement its own zero-emissions vehicle (ZEV) mandate to achieve 2050 GHG targets," Energy Policy, Elsevier, vol. 110(C), pages 447-460.
    3. Oskar Lecuyer & Adrien Vogt-Schilb, 2013. "Assessing and ordering investments in polluting fossil-fueled and zero-carbon capital," CIRED Working Papers hal-00850680, HAL.
    4. Veronika Kulmer, 2013. "Promoting alternative, environmentally friendly passenger transport technologies: Directed technological change in a bottom-up/top-down CGE model," Graz Economics Papers 2013-02, University of Graz, Department of Economics.
    5. Galinato, Gregmar I. & Yoder, Jonathan K., 2010. "An integrated tax-subsidy policy for carbon emission reduction," Resource and Energy Economics, Elsevier, vol. 32(3), pages 310-326, August.
    6. Samuel Pelletier & Ola Jabali & Gilbert Laporte, 2016. "50th Anniversary Invited Article—Goods Distribution with Electric Vehicles: Review and Research Perspectives," Transportation Science, INFORMS, vol. 50(1), pages 3-22, February.
    7. Nilsson, Måns & Nykvist, Björn, 2016. "Governing the electric vehicle transition – Near term interventions to support a green energy economy," Applied Energy, Elsevier, vol. 179(C), pages 1360-1371.
    8. Nuri Cihat Onat & Murat Kucukvar & Omer Tatari, 2014. "Towards Life Cycle Sustainability Assessment of Alternative Passenger Vehicles," Sustainability, MDPI, vol. 6(12), pages 1-38, December.
    9. Siti Indati Mustapa & Bamidele Victor Ayodele & Waznatol Widad Mohamad Ishak & Freida Ozavize Ayodele, 2020. "Evaluation of Cost Competitiveness of Electric Vehicles in Malaysia Using Life Cycle Cost Analysis Approach," Sustainability, MDPI, vol. 12(13), pages 1-14, June.
    10. Lehmann, Paul & Gawel, Erik, 2013. "Why should support schemes for renewable electricity complement the EU emissions trading scheme?," Energy Policy, Elsevier, vol. 52(C), pages 597-607.
    11. Linn, Joshua & McConnell, Virginia, 2019. "Interactions between federal and state policies for reducing vehicle emissions," Energy Policy, Elsevier, vol. 126(C), pages 507-517.
    12. Safari, M., 2018. "Battery electric vehicles: Looking behind to move forward," Energy Policy, Elsevier, vol. 115(C), pages 54-65.
    13. Rao, Zhonghao & Wang, Shuangfeng, 2011. "A review of power battery thermal energy management," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(9), pages 4554-4571.
    14. Nykvist, Björn & Sprei, Frances & Nilsson, Måns, 2019. "Assessing the progress toward lower priced long range battery electric vehicles," Energy Policy, Elsevier, vol. 124(C), pages 144-155.
    15. Reichenbach, Johanna & Requate, Till, 2012. "Subsidies for renewable energies in the presence of learning effects and market power," Resource and Energy Economics, Elsevier, vol. 34(2), pages 236-254.
    16. repec:hal:journl:hal-00850680 is not listed on IDEAS
    17. Delucchi, Mark A. & Jacobson, Mark Z., 2011. "Providing all global energy with wind, water, and solar power, Part II: Reliability, system and transmission costs, and policies," Energy Policy, Elsevier, vol. 39(3), pages 1170-1190, March.
    18. Breetz, Hanna L. & Salon, Deborah, 2018. "Do electric vehicles need subsidies? Ownership costs for conventional, hybrid, and electric vehicles in 14 U.S. cities," Energy Policy, Elsevier, vol. 120(C), pages 238-249.
    19. Harvey, L.D. Danny, 2018. "Cost and energy performance of advanced light duty vehicles: Implications for standards and subsidies," Energy Policy, Elsevier, vol. 114(C), pages 1-12.
    20. Mahmoudzadeh Andwari, Amin & Pesiridis, Apostolos & Rajoo, Srithar & Martinez-Botas, Ricardo & Esfahanian, Vahid, 2017. "A review of Battery Electric Vehicle technology and readiness levels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 414-430.
    21. Riesz, Jenny & Sotiriadis, Claire & Ambach, Daisy & Donovan, Stuart, 2016. "Quantifying the costs of a rapid transition to electric vehicles," Applied Energy, Elsevier, vol. 180(C), pages 287-300.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wsi:serxxx:v:63:y:2018:i:02:n:s0217590817400148. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Tai Tone Lim (email available below). General contact details of provider: http://www.worldscinet.com/ser/ser.shtml .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.