IDEAS home Printed from https://ideas.repec.org/a/wly/jfutmk/v36y2016i12p1194-1209.html
   My bibliography  Save this article

Option Pricing Under Skewness and Kurtosis Using a Cornish–Fisher Expansion

Author

Listed:
  • Sofiane Aboura
  • Didier Maillard

Abstract

This paper revisits the pricing of options, in a context of financial stress, when the underlying asset's returns displays skewness and excess kurtosis. For that purpose, we use a Cornish–Fisher transformation for valuing option contracts with an exact formula allowing for heavy‐tails. An application to the S&P 500 stock index option contracts is carried out during both stress (October 2008) and calm (May 2015) periods. It provides evidence about the capability of the Cornish–Fisher model to fairly price options during a period of stress without violating the skewness–kurtosis boundaries given its large domain of validity. © 2016 Wiley Periodicals, Inc. Jrl Fut Mark 36:1194–1209, 2016

Suggested Citation

  • Sofiane Aboura & Didier Maillard, 2016. "Option Pricing Under Skewness and Kurtosis Using a Cornish–Fisher Expansion," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 36(12), pages 1194-1209, December.
  • Handle: RePEc:wly:jfutmk:v:36:y:2016:i:12:p:1194-1209
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/
    Download Restriction: no

    References listed on IDEAS

    as
    1. Dimitris Flamouris & Daniel Giamouridis, 2002. "Estimating Implied PDFs From American Options on Futures: A New Semiparametric Approach," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 22(1), pages 1-30, January.
    2. Jondeau, Eric & Rockinger, Michael, 2001. "Gram-Charlier densities," Journal of Economic Dynamics and Control, Elsevier, vol. 25(10), pages 1457-1483, October.
    3. Charles J. Corrado & Tie Su, 1996. "Skewness And Kurtosis In S&P 500 Index Returns Implied By Option Prices," Journal of Financial Research, Southern Finance Association;Southwestern Finance Association, vol. 19(2), pages 175-192, June.
    4. Emmanuel Jurczenko & Bertrand Maillet & Bogdan Negrea, 2004. "A note on skewness and kurtosis adjusted option pricing models under the Martingale restriction," Quantitative Finance, Taylor & Francis Journals, vol. 4(5), pages 479-488.
    5. León, à ngel & Mencía, Javier & Sentana, Enrique, 2009. "Parametric Properties of Semi-Nonparametric Distributions, with Applications to Option Valuation," Journal of Business & Economic Statistics, American Statistical Association, vol. 27(2), pages 176-192.
    6. Thierry Ané, 1999. "Pricing and hedging S&P 500 index options with Hermite polynomial approximation: empirical tests of Madan and Milne's model," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 19(7), pages 735-758, October.
    7. Robert C. Merton, 2005. "Theory of rational option pricing," World Scientific Book Chapters, in: Sudipto Bhattacharya & George M Constantinides (ed.),Theory Of Valuation, chapter 8, pages 229-288, World Scientific Publishing Co. Pte. Ltd..
    8. Charles Corrado, 2007. "The hidden martingale restriction in Gram‐Charlier option prices," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 27(6), pages 517-534, June.
    9. Patrick Navatte & Christophe Villa, 2000. "The information content of implied volatility, skewness and kurtosis: empirical evidence from long‐term CAC 40 options," European Financial Management, European Financial Management Association, vol. 6(1), pages 41-56, March.
    10. Hosam Ki & Byungwook Choi & Kook‐Hyun Chang & Miyoung Lee, 2005. "Option pricing under extended normal distribution," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 25(9), pages 845-871, September.
    11. Bertrand Maillet & Bogdan Négréa, 2004. "A Note on Skewness and Kurtosis Adjusted Option Pricing Models under the Martingale Restriction," Post-Print hal-00308980, HAL.
    12. Christine A. Brown & David M. Robinson, 2002. "Skewness and Kurtosis Implied by Option Prices: A Correction," Journal of Financial Research, Southern Finance Association;Southwestern Finance Association, vol. 25(2), pages 279-282, June.
    13. Charles J. Corrado & Tie Su, 1996. "Skewness And Kurtosis In S&P 500 Index Returns Implied By Option Prices," Journal of Financial Research, Southern Finance Association;Southwestern Finance Association, vol. 19(2), pages 175-192, June.
    14. António Câmara & Steven L. Heston, 2008. "Closed‐form option pricing formulas with extreme events," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 28(3), pages 213-230, March.
    15. Charles J. Corrado & Tie Su, 1996. "S&P 500 index option tests of Jarrow and Rudd's approximate option valuation formula," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 16(6), pages 611-629, September.
    16. Black, Fischer & Scholes, Myron S, 1973. "The Pricing of Options and Corporate Liabilities," Journal of Political Economy, University of Chicago Press, vol. 81(3), pages 637-654, May-June.
    17. Keiichi Tanaka & Takeshi Yamada & Toshiaki Watanabe, 2010. "Applications of Gram-Charlier expansion and bond moments for pricing of interest rates and credit risk," Quantitative Finance, Taylor & Francis Journals, vol. 10(6), pages 645-662.
    18. Schlögl, Erik, 2013. "Option pricing where the underlying assets follow a Gram/Charlier density of arbitrary order," Journal of Economic Dynamics and Control, Elsevier, vol. 37(3), pages 611-632.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Young Shin Kim & Kum-Hwan Roh & Raphael Douady, 2020. "Tempered Stable Processes with Time Varying Exponential Tails," Papers 2006.07669, arXiv.org, revised Aug 2020.
    2. Young Shin Kim & Kum-Hwan Roh & Raphaël Douady, 2020. "Tempered Stable Processes with Time Varying Exponential Tails," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) hal-03018495, HAL.
    3. Charles-Olivier Amédée-Manesme & Fabrice Barthélémy & Didier Maillard, 2019. "Computation of the corrected Cornish–Fisher expansion using the response surface methodology: application to VaR and CVaR," Annals of Operations Research, Springer, vol. 281(1), pages 423-453, October.
    4. Young Shin Kim & Kum-Hwan Roh & Raphaël Douady, 2020. "Tempered Stable Processes with Time Varying Exponential Tails," Working Papers hal-03018495, HAL.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:jfutmk:v:36:y:2016:i:12:p:1194-1209. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Wiley Content Delivery). General contact details of provider: http://www.interscience.wiley.com/jpages/0270-7314/ .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.