IDEAS home Printed from https://ideas.repec.org/p/hal/journl/hal-03512709.html

Tempered stable processes with time-varying exponential tails

Author

Listed:
  • Raphaël Douady

    (CES - Centre d'économie de la Sorbonne - UP1 - Université Paris 1 Panthéon-Sorbonne - CNRS - Centre National de la Recherche Scientifique)

  • Young Shin Kim
  • Kum-Hwan Roh

Abstract

In this paper, we introduce a new time series model having a stochastic exponential tail. This model is constructed based on the Normal Tempered Stable distribution with a time-varying parameter. The model captures the stochastic exponential tail, which generates the volatility smile effect and volatility term structure in option pricing. Moreover, the model describes the time-varying volatility of volatility. We empirically show the stochastic skewness and stochastic kurtosis by applying the model to analyze S&P 500 index return data. We present the Monte-Carlo simulation technique for the parameter calibration of the model for the S&P 500 option prices. We can see that the stochastic exponential tail makes the model better to analyze the market option prices by the calibration.
(This abstract was borrowed from another version of this item.)

Suggested Citation

  • Raphaël Douady & Young Shin Kim & Kum-Hwan Roh, 2021. "Tempered stable processes with time-varying exponential tails," Post-Print hal-03512709, HAL.
  • Handle: RePEc:hal:journl:hal-03512709
    DOI: 10.1080/14697688.2021.1962958
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a
    for a similarly titled item that would be available.

    Other versions of this item:

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Young Shin Kim, 2022. "Portfolio optimization and marginal contribution to risk on multivariate normal tempered stable model," Annals of Operations Research, Springer, vol. 312(2), pages 853-881, May.
    2. Young Shin Kim & Frank J. Fabozzi, 2024. "Portfolio optimization with relative tail risk," Annals of Operations Research, Springer, vol. 341(2), pages 1023-1055, October.
    3. Young Shin Kim & Hyangju Kim & Jaehyung Choi, 2023. "Deep Calibration With Artificial Neural Network: A Performance Comparison on Option Pricing Models," Papers 2303.08760, arXiv.org.
    4. Tong Liu & Yanlin Shi, 2022. "Innovation of the Component GARCH Model: Simulation Evidence and Application on the Chinese Stock Market," Mathematics, MDPI, vol. 10(11), pages 1-18, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:journl:hal-03512709. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.