IDEAS home Printed from https://ideas.repec.org/a/the/publsh/554.html
   My bibliography  Save this article

Orders of limits for stationary distributions, stochastic dominance, and stochastic stability

Author

Listed:
  • , H.

    (Department of Economics, University of Wisconsin)

Abstract

A population of agents recurrently plays a two-strategy population game. When an agent receives a revision opportunity, he chooses a new strategy using a noisy best response rule that satisfies mild regularity conditions; best response with mutations, logit choice, and probit choice are all permitted. We study the long run behavior of the resulting Markov process when the noise level $\eta$ is small and the population size $N$ is large. We obtain a precise characterization of the asymptotics of the stationary distributions $\mu^{N,\eta}$ as $\eta$ approaches zero and $N$ approaches infinity, and we establish that these asymptotics are the same for either order of limits and for all simultaneous limits. In general, different noisy best response rules can generate different stochastically stable states. To obtain a robust selection result, we introduce a refinement of risk dominance called \emph{stochastic dominance}, and we prove that coordination on a given strategy is stochastically stable under every noisy best response rule if and only if that strategy is stochastically dominant.

Suggested Citation

  • , H., 2010. "Orders of limits for stationary distributions, stochastic dominance, and stochastic stability," Theoretical Economics, Econometric Society, vol. 5(1), January.
  • Handle: RePEc:the:publsh:554
    as

    Download full text from publisher

    File URL: http://econtheory.org/ojs/index.php/te/article/viewFile/20100001/3302/135
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Glenn Ellison, 2000. "Basins of Attraction, Long-Run Stochastic Stability, and the Speed of Step-by-Step Evolution," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 67(1), pages 17-45.
    2. Fudenberg, Drew & Imhof, Lorens A., 2006. "Imitation processes with small mutations," Journal of Economic Theory, Elsevier, vol. 131(1), pages 251-262, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Arigapudi, Srinivas, 2020. "Exit from equilibrium in coordination games under probit choice," Games and Economic Behavior, Elsevier, vol. 122(C), pages 168-202.
    2. Robert Molzon, 2012. "Large Population Limits for Evolutionary Dynamics with Random Matching," Dynamic Games and Applications, Springer, vol. 2(1), pages 146-159, March.
    3. Sawa, Ryoji & Wu, Jiabin, 2023. "Statistical inference in evolutionary dynamics," Games and Economic Behavior, Elsevier, vol. 137(C), pages 294-316.
    4. Brian McLoone & Wai-Tong Louis Fan & Adam Pham & Rory Smead & Laurence Loewe, 2018. "Stochasticity, Selection, and the Evolution of Cooperation in a Two-Level Moran Model of the Snowdrift Game," Complexity, Hindawi, vol. 2018, pages 1-14, February.
    5. Sawa, Ryoji, 2021. "A stochastic stability analysis with observation errors in normal form games," Games and Economic Behavior, Elsevier, vol. 129(C), pages 570-589.
    6. Staudigl, Mathias, 2012. "Stochastic stability in asymmetric binary choice coordination games," Games and Economic Behavior, Elsevier, vol. 75(1), pages 372-401.
    7. William H. Sandholm & Mathias Staudigl, 2018. "Sample Path Large Deviations for Stochastic Evolutionary Game Dynamics," Mathematics of Operations Research, INFORMS, vol. 43(4), pages 1348-1377, November.
    8. Van Cleve, Jeremy & Lehmann, Laurent, 2013. "Stochastic stability and the evolution of coordination in spatially structured populations," Theoretical Population Biology, Elsevier, vol. 89(C), pages 75-87.
    9. Sawa, Ryoji, 2021. "A prospect theory Nash bargaining solution and its stochastic stability," Journal of Economic Behavior & Organization, Elsevier, vol. 184(C), pages 692-711.
    10. Sawa, Ryoji & Wu, Jiabin, 2018. "Reference-dependent preferences, super-dominance and stochastic stability," Journal of Mathematical Economics, Elsevier, vol. 78(C), pages 96-104.
    11. Sawa, Ryoji & Wu, Jiabin, 2018. "Prospect dynamics and loss dominance," Games and Economic Behavior, Elsevier, vol. 112(C), pages 98-124.
    12. Sandholm, William H., 2012. "Stochastic imitative game dynamics with committed agents," Journal of Economic Theory, Elsevier, vol. 147(5), pages 2056-2071.
    13. Arigapudi, Srinivas, 2020. "Transitions between equilibria in bilingual games under logit choice," Journal of Mathematical Economics, Elsevier, vol. 86(C), pages 24-34.
    14. Carlos Alós-Ferrer & Nick Netzer, 2015. "Robust stochastic stability," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 58(1), pages 31-57, January.
    15. Sandholm, William H. & Staudigl, Mathias, 2016. "Large Deviations and Stochastic Stability in the Small Noise Double Limit, I: Theory," Center for Mathematical Economics Working Papers 505, Center for Mathematical Economics, Bielefeld University.
    16. Kevin Hasker, 2014. "The Emergent Seed: A Representation Theorem for Models of Stochastic Evolution and two formulas for Waiting Time," Levine's Working Paper Archive 786969000000000954, David K. Levine.
    17. Sandholm, William H. & Staudigl, Mathias, 2016. "Large Deviations and Stochastic Stability in the Small Noise Double Limit, II: The Logit Model," Center for Mathematical Economics Working Papers 506, Center for Mathematical Economics, Bielefeld University.
    18. Van Cleve, Jeremy, 2015. "Social evolution and genetic interactions in the short and long term," Theoretical Population Biology, Elsevier, vol. 103(C), pages 2-26.
    19. Daniel Christopher Opolot, 2022. "On the relationship between p-dominance and stochastic stability in network games," International Journal of Game Theory, Springer;Game Theory Society, vol. 51(2), pages 307-351, June.
    20. Ryoji Sawa, 2012. "Mutation rates and equilibrium selection under stochastic evolutionary dynamics," International Journal of Game Theory, Springer;Game Theory Society, vol. 41(3), pages 489-496, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ellison, Glenn & Fudenberg, Drew & Imhof, Lorens A., 2009. "Random matching in adaptive dynamics," Games and Economic Behavior, Elsevier, vol. 66(1), pages 98-114, May.
    2. Juan I Block & Drew Fudenberg & David K Levine, 2017. "Learning Dynamics Based on Social Comparisons," Levine's Working Paper Archive 786969000000001375, David K. Levine.
    3. Cui, Zhiwei & Zhai, Jian, 2010. "Escape dynamics and equilibria selection by iterative cycle decomposition," Journal of Mathematical Economics, Elsevier, vol. 46(6), pages 1015-1029, November.
    4. Tsakas Nikolas, 2014. "Imitating the Most Successful Neighbor in Social Networks," Review of Network Economics, De Gruyter, vol. 12(4), pages 1-33, February.
    5. Kevin Hasker, 2014. "The Emergent Seed: A Representation Theorem for Models of Stochastic Evolution and two formulas for Waiting Time," Levine's Working Paper Archive 786969000000000954, David K. Levine.
    6. Block, Juan I. & Fudenberg, Drew & Levine, David K., 2019. "Learning dynamics with social comparisons and limited memory," Theoretical Economics, Econometric Society, vol. 14(1), January.
    7. Jonas Hedlund & Carlos Oyarzun, 2018. "Imitation in heterogeneous populations," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 65(4), pages 937-973, June.
    8. Konrad, Kai A. & Morath, Florian, 2020. "The Volunteer’s Dilemma in Finite Populations," CEPR Discussion Papers 15536, C.E.P.R. Discussion Papers.
    9. Norman, Thomas W.L., 2009. "Rapid evolution under inertia," Games and Economic Behavior, Elsevier, vol. 66(2), pages 865-879, July.
    10. John T. Scholz & Cheng‐Lung Wang, 2009. "Learning to Cooperate: Learning Networks and the Problem of Altruism," American Journal of Political Science, John Wiley & Sons, vol. 53(3), pages 572-587, July.
    11. Vincent Boucher, 2017. "Selecting Equilibria using Best-Response Dynamics," Economics Bulletin, AccessEcon, vol. 37(4), pages 2728-2734.
    12. Boncinelli Leonardo, 2008. "Global vs. Local Information in (Anti-)Coordination Problems with Imitators," The B.E. Journal of Theoretical Economics, De Gruyter, vol. 8(1), pages 1-19, June.
    13. Bryan McCannon, 2011. "Coordination between a sophisticated and fictitious player," Journal of Economics, Springer, vol. 102(3), pages 263-273, April.
    14. Philip R Neary & Jonathan Newton, 2017. "Heterogeneity in preferences and behavior in threshold models," The Journal of Mechanism and Institution Design, Society for the Promotion of Mechanism and Institution Design, University of York, vol. 2(1), pages 141-159, December.
    15. Mandel Antoine & Botta Nicola, 2009. "A Note on Herbert Gintis' "Emergence of a Price System from Decentralized Bilateral Exchange"," The B.E. Journal of Theoretical Economics, De Gruyter, vol. 9(1), pages 1-18, December.
    16. Bin Wu & Julián García & Christoph Hauert & Arne Traulsen, 2013. "Extrapolating Weak Selection in Evolutionary Games," PLOS Computational Biology, Public Library of Science, vol. 9(12), pages 1-7, December.
    17. Ania, Ana B. & Wagener, Andreas, 2009. "The Open Method of Coordination (OMC) as an Evolutionary Learning Process," Hannover Economic Papers (HEP) dp-416, Leibniz Universität Hannover, Wirtschaftswissenschaftliche Fakultät.
    18. Hsiao-Chi Chen & Yunshyong Chow & Li-Chau Wu, 2013. "Imitation, local interaction, and coordination," International Journal of Game Theory, Springer;Game Theory Society, vol. 42(4), pages 1041-1057, November.
    19. Mathias Staudigl, 2010. "On a General class of stochastic co-evolutionary dynamics," Vienna Economics Papers 1001, University of Vienna, Department of Economics.
    20. Newton, Jonathan & Angus, Simon D., 2015. "Coalitions, tipping points and the speed of evolution," Journal of Economic Theory, Elsevier, vol. 157(C), pages 172-187.

    More about this item

    Keywords

    Evolutionary game theory; stochastic stability; equilibrium selection;
    All these keywords.

    JEL classification:

    • C72 - Mathematical and Quantitative Methods - - Game Theory and Bargaining Theory - - - Noncooperative Games
    • C73 - Mathematical and Quantitative Methods - - Game Theory and Bargaining Theory - - - Stochastic and Dynamic Games; Evolutionary Games

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:the:publsh:554. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Martin J. Osborne (email available below). General contact details of provider: http://econtheory.org .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.