IDEAS home Printed from https://ideas.repec.org/a/taf/tcpoxx/v17y2017i6p781-800.html
   My bibliography  Save this article

Managing the costs of CO abatement in the cement industry

Author

Listed:
  • Johan Rootzén
  • Filip Johnsson

Abstract

This article investigates how the costs associated with deep reductions in CO2 emissions from the cement industry will influence the costs across the entire value chain from cement production to the eventual end-use, in this case a residential building. The work is motivated by the substantial difference between the pricing of CO2 emissions and the costs of mitigation at the production sites of energy-intensive industries, such as cement manufacture. By examining how CO2 trading and investments in low-carbon kiln systems affect costs and prices further up the supply chain of cement our analysis provides new perspectives on the costs of industry abatement of CO2 and on the question of who could or should pay the price of such abatement. The analysis reveals that the cost impacts decrease substantially at each transformation stage, from limestone to final end-uses. The increase in total production costs for the residential building used as the case study in this work is limited to 1%, even in the cases where the cement price is assumed to be almost doubled.Policy relevanceWith the price of emission allowances under the EU Emissions Trading System (EU ETS) currently far below the levels required to unlock investments in low-CO2 production processes in carbon-intensive industry (i.e. petroleum refining, iron and steel production and cement manufacturing), this article seeks to pave the way for a discussion on complementary policy options. The results from this study, using the supply of cement and concrete to a residential building as a case study, suggest that because cement and concrete typically account for a limited proportion of the total cost of most construction and civil engineering projects, a policy scheme designed to allocate more of the costs of CO2 abatement to the end-users (of cement) would neither (significantly) alter the cost structure nor (dramatically) increase overall project costs.

Suggested Citation

  • Johan Rootzén & Filip Johnsson, 2017. "Managing the costs of CO abatement in the cement industry," Climate Policy, Taylor & Francis Journals, vol. 17(6), pages 781-800, August.
  • Handle: RePEc:taf:tcpoxx:v:17:y:2017:i:6:p:781-800
    DOI: 10.1080/14693062.2016.1191007
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/14693062.2016.1191007
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/14693062.2016.1191007?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Tim Laing & Misato Sato & Michael Grubb & Claudia Comberti, 2013. "Assessing the effectiveness of the EU Emissions Trading System," GRI Working Papers 106, Grantham Research Institute on Climate Change and the Environment.
    2. Karsten Neuhoff & Andrzej Ancygier & Jean-Pierre Ponssard & Philippe Quirion & Nagore Sabio & Oliver Sartor & Misato Sato & Anne Schopp, 2015. "Modernization and Innovation in the Materials Sector: Lessons from Steel and Cement," DIW Economic Bulletin, DIW Berlin, German Institute for Economic Research, vol. 5(28/29), pages 387-395.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ida Karlsson & Johan Rootzén & Alla Toktarova & Mikael Odenberger & Filip Johnsson & Lisa Göransson, 2020. "Roadmap for Decarbonization of the Building and Construction Industry—A Supply Chain Analysis Including Primary Production of Steel and Cement," Energies, MDPI, vol. 13(16), pages 1-40, August.
    2. Anna Hörbe Emanuelsson & Filip Johnsson, 2023. "The Cost to Consumers of Carbon Capture and Storage—A Product Value Chain Analysis," Energies, MDPI, vol. 16(20), pages 1-23, October.
    3. Griffiths, Steve & Sovacool, Benjamin K. & Furszyfer Del Rio, Dylan D. & Foley, Aoife M. & Bazilian, Morgan D. & Kim, Jinsoo & Uratani, Joao M., 2023. "Decarbonizing the cement and concrete industry: A systematic review of socio-technical systems, technological innovations, and policy options," Renewable and Sustainable Energy Reviews, Elsevier, vol. 180(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Stefan Niederhafner, 2014. "The Korean Energy and GHG Target Management System: An Alternative to Kyoto-Protocol Emissions Trading Systems?," TEMEP Discussion Papers 2014118, Seoul National University; Technology Management, Economics, and Policy Program (TEMEP), revised Sep 2014.
    2. Johansson, Per-Olov, 2015. "Tradable Permits in Cost-Benefit Analysis," SSE Working Paper Series in Economics 2015:3, Stockholm School of Economics.
    3. Wang, Feng & Liu, Xiying & Nguyen, Tue Anh, 2018. "Evaluating the economic impacts and feasibility of China's energy cap: Based on an Analytic General Equilibrium Model," Economic Modelling, Elsevier, vol. 69(C), pages 114-126.
    4. Nemet, Gregory F. & Zipperer, Vera & Kraus, Martina, 2018. "The valley of death, the technology pork barrel, and public support for large demonstration projects," Energy Policy, Elsevier, vol. 119(C), pages 154-167.
    5. Karpf, Andreas & Mandel, Antoine & Battiston, Stefano, 2018. "Price and network dynamics in the European carbon market," Journal of Economic Behavior & Organization, Elsevier, vol. 153(C), pages 103-122.
    6. Sæther, Simen Rostad, 2021. "Climate policy choices: An empirical study of the effects on the OECD and BRICS power sector emission intensity," Economic Analysis and Policy, Elsevier, vol. 71(C), pages 499-515.
    7. Bosello, Francesco & Davide, Marinella & Alloisio, Isabella, 2016. "Economic Implications of EU Mitigation Policies: Domestic and International Effects," EIA: Climate Change: Economic Impacts and Adaptation 234938, Fondazione Eni Enrico Mattei (FEEM).
    8. Requate, Till & Camacho-Cuena, Eva & Kean Siang, Ch'ng & Waichman, Israel, 2019. "Tell the truth or not? The montero mechanism for emissions control at work," Journal of Environmental Economics and Management, Elsevier, vol. 95(C), pages 133-152.
    9. Frédéric Branger & Oskar Lecuyer & Philippe Quirion, 2013. "The European Union Emissions Trading System : should we throw the flagship out with the bathwater ?," Working Papers hal-00866408, HAL.
    10. Endre Tvinnereim, 2014. "The bears are right: Why cap-and-trade yields greater emission reductions than expected, and what that means for climate policy," Climatic Change, Springer, vol. 127(3), pages 447-461, December.
    11. Xu Liu & Bo Shen & Lynn Price & Ali Hasanbeigi & Hongyou Lu & Cong Yu & Guanyun Fu, 2019. "A review of international practices for energy efficiency and carbon emissions reduction and lessons learned for China," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 8(5), September.
    12. Stefano Carattini & Maria Carvalho & Sam Fankhauser, 2018. "Overcoming public resistance to carbon taxes," Wiley Interdisciplinary Reviews: Climate Change, John Wiley & Sons, vol. 9(5), September.
    13. Hu, Jing & Crijns-Graus, Wina & Lam, Long & Gilbert, Alyssa, 2015. "Ex-ante evaluation of EU ETS during 2013–2030: EU-internal abatement," Energy Policy, Elsevier, vol. 77(C), pages 152-163.
    14. Luigi De Paoli, 2016. "The EU Emissions Trading System: For an effective and viable reform," ECONOMICS AND POLICY OF ENERGY AND THE ENVIRONMENT, FrancoAngeli Editore, vol. 2016(1), pages 5-40.
    15. Sebastian Schaefer, 2018. "Decoupling the EU ETS from subsidized renewables and other demand side effects Lessons from the impact of the EU ETS on CO2 emissions in the German electricity sector," MAGKS Papers on Economics 201835, Philipps-Universität Marburg, Faculty of Business Administration and Economics, Department of Economics (Volkswirtschaftliche Abteilung).
    16. Juris Justitio Hakim Putra & Nabilla Nabilla & Fidelia Yemima Jabanto, 2021. "Comparing Carbon Tax and Cap and Trade as Mechanism to Reduce Emission in Indonesia," International Journal of Energy Economics and Policy, Econjournals, vol. 11(5), pages 106-111.
    17. Krzysztof Wach & Agnieszka Głodowska & Marek Maciejewski & Marek Sieja, 2021. "Europeanization Processes of the EU Energy Policy in Visegrad Countries in the Years 2005–2018," Energies, MDPI, vol. 14(7), pages 1-23, March.
    18. Reckling, Dennis, 2016. "Variance risk premia in CO2 markets: A political perspective," Energy Policy, Elsevier, vol. 94(C), pages 345-354.
    19. Joltreau, Eugénie & Sommerfeld, Katrin, 2016. "Why does emissions trading under the EU ETS not affect firms' competitiveness? Empirical findings from the literature," ZEW Discussion Papers 16-062, ZEW - Leibniz Centre for European Economic Research.
    20. Eugénie Joltreau, 2022. "Extended Producer Responsibility, Packaging Waste Reduction and Eco-design," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 83(3), pages 527-578, November.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:tcpoxx:v:17:y:2017:i:6:p:781-800. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/tcpo20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.