A Nonparametric Bayesian Analysis of Heterogenous Treatment Effects in Digital Experimentation
Author
Abstract
Suggested Citation
DOI: 10.1080/07350015.2016.1172013
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Chamberlain, Gary & Imbens, Guido W, 2003.
"Nonparametric Applications of Bayesian Inference,"
Journal of Business & Economic Statistics, American Statistical Association, vol. 21(1), pages 12-18, January.
- Imbens, Guido & Chamberlain, Gary, 1996. "Nonparametric Applications of Bayesian Inference," Scholarly Articles 3221493, Harvard University Department of Economics.
- Gary Chamberlain & Guido W. Imbens, 1996. "Nonparametric Applications of Bayesian Inference," Harvard Institute of Economic Research Working Papers 1772, Harvard - Institute of Economic Research.
- Gary Chamberlain & Guido W. Imbens, 1996. "Nonparametric Applications of Bayesian Inference," NBER Technical Working Papers 0200, National Bureau of Economic Research, Inc.
- Richard Berk & Emil Pitkin & Lawrence Brown & Andreas Buja & Edward George & Linda Zhao, 2013. "Covariance Adjustments for the Analysis of Randomized Field Experiments," Evaluation Review, , vol. 37(3-4), pages 170-196, June.
- Donald B. Rubin, 2005. "Causal Inference Using Potential Outcomes: Design, Modeling, Decisions," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 322-331, March.
- Guido W. Imbens, 2004.
"Nonparametric Estimation of Average Treatment Effects Under Exogeneity: A Review,"
The Review of Economics and Statistics, MIT Press, vol. 86(1), pages 4-29, February.
- Guido W. Imbens, 2003. "Nonparametric Estimation of Average Treatment Effects under Exogeneity: A Review," NBER Technical Working Papers 0294, National Bureau of Economic Research, Inc.
- Taddy, Matthew A. & Kottas, Athanasios, 2010. "A Bayesian Nonparametric Approach to Inference for Quantile Regression," Journal of Business & Economic Statistics, American Statistical Association, vol. 28(3), pages 357-369.
- Dale J. Poirier, 2011. "Bayesian Interpretations of Heteroskedastic Consistent Covariance Estimators Using the Informed Bayesian Bootstrap," Econometric Reviews, Taylor & Francis Journals, vol. 30(4), pages 457-468, August.
- Imbens,Guido W. & Rubin,Donald B., 2015. "Causal Inference for Statistics, Social, and Biomedical Sciences," Cambridge Books, Cambridge University Press, number 9780521885881, Enero.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Lechner, Michael, 2018.
"Modified Causal Forests for Estimating Heterogeneous Causal Effects,"
IZA Discussion Papers
12040, Institute of Labor Economics (IZA).
- Lechner, Michael, 2019. "Modified Causal Forests for Estimating Heterogeneous Causal Effects," CEPR Discussion Papers 13430, C.E.P.R. Discussion Papers.
- Lechner, Michael, 2019. "Modified Causal Forests for Estimating Heterogeneous Causal Effects," Economics Working Paper Series 1901, University of St. Gallen, School of Economics and Political Science.
- Michael Lechner, 2018. "Modified Causal Forests for Estimating Heterogeneous Causal Effects," Papers 1812.09487, arXiv.org, revised Jul 2019.
- Davide Viviano & Jelena Bradic, 2019. "Synthetic learner: model-free inference on treatments over time," Papers 1904.01490, arXiv.org, revised Aug 2022.
- Philippe Goulet Coulombe, 2024.
"The macroeconomy as a random forest,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 39(3), pages 401-421, April.
- Philippe Goulet Coulombe, 2020. "The Macroeconomy as a Random Forest," Papers 2006.12724, arXiv.org, revised Mar 2021.
- Philippe Goulet Coulombe, 2021. "The Macroeconomy as a Random Forest," Working Papers 21-05, Chair in macroeconomics and forecasting, University of Quebec in Montreal's School of Management.
- Miller, Steve, 2020. "Causal forest estimation of heterogeneous and time-varying environmental policy effects," Journal of Environmental Economics and Management, Elsevier, vol. 103(C).
- Michael C Knaus & Michael Lechner & Anthony Strittmatter, 2021.
"Machine learning estimation of heterogeneous causal effects: Empirical Monte Carlo evidence,"
The Econometrics Journal, Royal Economic Society, vol. 24(1), pages 134-161.
- Knaus, Michael C. & Lechner, Michael & Strittmatter, Anthony, 2018. "Machine Learning Estimation of Heterogeneous Causal Effects: Empirical Monte Carlo Evidence," IZA Discussion Papers 12039, Institute of Labor Economics (IZA).
- Lechner, Michael & Knaus, Michael C. & Strittmatter, Anthony, 2018. "Machine Learning Estimation of Heterogeneous Causal Effects: Empirical Monte Carlo Evidence," CEPR Discussion Papers 13402, C.E.P.R. Discussion Papers.
- Knaus, Michael C. & Lechner, Michael & anthony.strittmatter@unisg.ch, 2018. "Machine Learning Estimation of Heterogeneous Causal Effects: Empirical Monte Carlo Evidence," Economics Working Paper Series 1817, University of St. Gallen, School of Economics and Political Science.
- Michael C. Knaus & Michael Lechner & Anthony Strittmatter, 2018. "Machine Learning Estimation of Heterogeneous Causal Effects: Empirical Monte Carlo Evidence," Papers 1810.13237, arXiv.org, revised Dec 2018.
- Qingyuan Zhao & Dylan S. Small & Ashkan Ertefaie, 2022. "Selective inference for effect modification via the lasso," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 84(2), pages 382-413, April.
- Jaeho Kim & Le Wang, 2019. "Hidden group patterns in democracy developments: Bayesian inference for grouped heterogeneity," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 34(6), pages 1016-1028, September.
- Shi, Chengchun & Luo, Shikai & Zhu, Hongtu & Song, Rui, 2021. "An online sequential test for qualitative treatment effects," LSE Research Online Documents on Economics 112521, London School of Economics and Political Science, LSE Library.
- Anthony Strittmatter, 2018.
"What Is the Value Added by Using Causal Machine Learning Methods in a Welfare Experiment Evaluation?,"
Papers
1812.06533, arXiv.org, revised Dec 2021.
- Strittmatter, Anthony, 2019. "What is the Value Added by using Causal Machine Learning Methods in a Welfare Experiment Evaluation?," VfS Annual Conference 2019 (Leipzig): 30 Years after the Fall of the Berlin Wall - Democracy and Market Economy 203499, Verein für Socialpolitik / German Economic Association.
- Strittmatter, Anthony, 2019. "What Is the Value Added by Using Causal Machine Learning Methods in a Welfare Experiment Evaluation?," GLO Discussion Paper Series 336, Global Labor Organization (GLO).
- Lai Xinglin, 2021. "Modelling hetegeneous treatment effects by quantitle local polynomial decision tree and forest," Papers 2111.15320, arXiv.org, revised Mar 2022.
- Martin Cousineau & Vedat Verter & Susan A. Murphy & Joelle Pineau, 2022. "Estimating causal effects with optimization-based methods: A review and empirical comparison," Papers 2203.00097, arXiv.org.
- Jean-Pierre Dubé & Sanjog Misra, 2017. "Personalized Pricing and Consumer Welfare," NBER Working Papers 23775, National Bureau of Economic Research, Inc.
- Guihua Wang & Jun Li & Wallace J. Hopp, 2022. "An Instrumental Variable Forest Approach for Detecting Heterogeneous Treatment Effects in Observational Studies," Management Science, INFORMS, vol. 68(5), pages 3399-3418, May.
- Matthew Gentzkow & Bryan T. Kelly & Matt Taddy, 2017. "Text as Data," NBER Working Papers 23276, National Bureau of Economic Research, Inc.
- Seungwoo Chin & Matthew E. Kahn & Hyungsik Roger Moon, 2020.
"Estimating the Gains from New Rail Transit Investment: A Machine Learning Tree Approach,"
Real Estate Economics, American Real Estate and Urban Economics Association, vol. 48(3), pages 886-914, September.
- Seungwoo Chin & Matthew E. Kahn & Hyungsik Roger Moon, 2017. "Estimating the Gains from New Rail Transit Investment: A Machine Learning Tree Approach," NBER Working Papers 23326, National Bureau of Economic Research, Inc.
- Gubela, Robin M. & Lessmann, Stefan & Jaroszewicz, Szymon, 2020. "Response transformation and profit decomposition for revenue uplift modeling," European Journal of Operational Research, Elsevier, vol. 283(2), pages 647-661.
- Huck, Nicolas, 2019. "Large data sets and machine learning: Applications to statistical arbitrage," European Journal of Operational Research, Elsevier, vol. 278(1), pages 330-342.
- Michael Lechner & Jana Mareckova, 2022. "Modified Causal Forest," Papers 2209.03744, arXiv.org.
- Maria Nareklishvili & Nicholas Polson & Vadim Sokolov, 2022. "Feature Selection for Personalized Policy Analysis," Papers 2301.00251, arXiv.org, revised Jul 2023.
- Gabriel Okasa, 2022. "Meta-Learners for Estimation of Causal Effects: Finite Sample Cross-Fit Performance," Papers 2201.12692, arXiv.org.
- Strittmatter, Anthony, 2023. "What is the value added by using causal machine learning methods in a welfare experiment evaluation?," Labour Economics, Elsevier, vol. 84(C).
- Cousineau, Martin & Verter, Vedat & Murphy, Susan A. & Pineau, Joelle, 2023. "Estimating causal effects with optimization-based methods: A review and empirical comparison," European Journal of Operational Research, Elsevier, vol. 304(2), pages 367-380.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Tenglong Li & Kenneth A. Frank & Mingming Chen, 2024. "A Conceptual Framework for Quantifying the Robustness of a Regression-Based Causal Inference in Observational Study," Mathematics, MDPI, vol. 12(3), pages 1-14, January.
- Peter Z. Schochet, "undated". "Statistical Theory for the RCT-YES Software: Design-Based Causal Inference for RCTs," Mathematica Policy Research Reports a0c005c003c242308a92c02dc, Mathematica Policy Research.
- Tenglong Li & Ken Frank, 2022. "The probability of a robust inference for internal validity," Sociological Methods & Research, , vol. 51(4), pages 1947-1968, November.
- Christoph Breunig & Ruixuan Liu & Zhengfei Yu, 2022. "Double Robust Bayesian Inference on Average Treatment Effects," Papers 2211.16298, arXiv.org, revised Feb 2025.
- Tang, Chuan & Heintzelman, Martin D. & Holsen, Thomas M., 2018. "Mercury pollution, information, and property values," Journal of Environmental Economics and Management, Elsevier, vol. 92(C), pages 418-432.
- Tenglong Li & Kenneth A. Frank, 2020. "The probability of a robust inference for internal validity and its applications in regression models," Papers 2005.12784, arXiv.org.
- Hang Miao & Kui Zhao & Zhun Wang & Linbo Jiang & Quanhui Jia & Yanming Fang & Quan Yu, 2020. "Intelligent Credit Limit Management in Consumer Loans Based on Causal Inference," Papers 2007.05188, arXiv.org.
- Tenglong Li & Kenneth A. Frank, 2019. "On the probability of a causal inference is robust for internal validity," Papers 1906.08726, arXiv.org.
- Caloffi, Annalisa & Freo, Marzia & Ghinoi, Stefano & Mariani, Marco & Rossi, Federica, 2022. "Assessing the effects of a deliberate policy mix: The case of technology and innovation advisory services and innovation vouchers," Research Policy, Elsevier, vol. 51(6).
- Florian Gunsilius & Yuliang Xu, 2021. "Matching for causal effects via multimarginal unbalanced optimal transport," Papers 2112.04398, arXiv.org, revised Jul 2022.
- Özler, Berk & Çelik, Çiğdem & Cunningham, Scott & Cuevas, P. Facundo & Parisotto, Luca, 2021.
"Children on the move: Progressive redistribution of humanitarian cash transfers among refugees,"
Journal of Development Economics, Elsevier, vol. 153(C).
- Ozler,Berk & Celik,Cigdem & Cunningham,Scott & Cuevas,Pablo Facundo & Parisotto,Luca, 2020. "Children on the Move : Progressive Redistribution of Humanitarian Cash Transfers among Refugees," Policy Research Working Paper Series 9471, The World Bank.
- Guido W. Imbens, 2022. "Causality in Econometrics: Choice vs Chance," Econometrica, Econometric Society, vol. 90(6), pages 2541-2566, November.
- Mark Kattenberg & Bas Scheer & Jurre Thiel, 2023. "Causal forests with fixed effects for treatment effect heterogeneity in difference-in-differences," CPB Discussion Paper 452, CPB Netherlands Bureau for Economic Policy Analysis.
- Tianmeng Lyu & Björn Bornkamp & Guenther Mueller‐Velten & Heinz Schmidli, 2023. "Bayesian inference for a principal stratum estimand on recurrent events truncated by death," Biometrics, The International Biometric Society, vol. 79(4), pages 3792-3802, December.
- Andrea Mercatanti & Fan Li, 2017. "Do debit cards decrease cash demand?: causal inference and sensitivity analysis using principal stratification," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 66(4), pages 759-776, August.
- Silvana Tiedemann & Jorge Sanchez Canales & Felix Schur & Raffaele Sgarlato & Lion Hirth & Oliver Ruhnau & Jonas Peters, 2024. "Identifying Elasticities in Autocorrelated Time Series Using Causal Graphs," Papers 2409.15530, arXiv.org.
- Sun, Shanxia & Delgado, Michael & Khanna, Neha, 2017. "Hybrid Vehicles and Household Driving Behavior: Implications for Miles Traveled and Gasoline Consumption," 2017 Annual Meeting, July 30-August 1, Chicago, Illinois 258502, Agricultural and Applied Economics Association.
- Guido W. Imbens, 2020.
"Potential Outcome and Directed Acyclic Graph Approaches to Causality: Relevance for Empirical Practice in Economics,"
Journal of Economic Literature, American Economic Association, vol. 58(4), pages 1129-1179, December.
- Guido Imbens, 2019. "Potential Outcome and Directed Acyclic Graph Approaches to Causality: Relevance for Empirical Practice in Economics," NBER Working Papers 26104, National Bureau of Economic Research, Inc.
- Horvath, Akos & Lang, Peter, 2021. "Do loan subsidies boost the real activity of small firms?," Journal of Banking & Finance, Elsevier, vol. 122(C).
- Rahul Singh & Liyuan Xu & Arthur Gretton, 2020. "Kernel Methods for Causal Functions: Dose, Heterogeneous, and Incremental Response Curves," Papers 2010.04855, arXiv.org, revised Oct 2022.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:jnlbes:v:34:y:2016:i:4:p:661-672. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/UBES20 .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.