IDEAS home Printed from
   My bibliography  Save this article

A Bayesian Nonparametric Approach to Inference for Quantile Regression


  • Taddy, Matthew A.
  • Kottas, Athanasios


No abstract is available for this item.

Suggested Citation

  • Taddy, Matthew A. & Kottas, Athanasios, 2010. "A Bayesian Nonparametric Approach to Inference for Quantile Regression," Journal of Business & Economic Statistics, American Statistical Association, vol. 28(3), pages 357-369.
  • Handle: RePEc:bes:jnlbes:v:28:i:3:y:2010:p:357-369

    Download full text from publisher

    File URL:
    File Function: full text
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to search for a different version of it.


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Lane F. Burgette & Jerome P. Reiter, 2012. "Modeling Adverse Birth Outcomes via Confirmatory Factor Quantile Regression," Biometrics, The International Biometric Society, vol. 68(1), pages 92-100, March.
    2. Xianhua Dai & Wolfgang Karl Härdle & Keming Yu, 2014. "Do Maternal Health Problems Influence Child's Worrying Status? Evidence from British Cohort Study," SFB 649 Discussion Papers SFB649DP2014-021, Sonderforschungsbereich 649, Humboldt University, Berlin, Germany.
    3. Fellingham, Gilbert W. & Kottas, Athanasios & Hartman, Brian M., 2015. "Bayesian nonparametric predictive modeling of group health claims," Insurance: Mathematics and Economics, Elsevier, vol. 60(C), pages 1-10.
    4. Ji, Yonggang & Lin, Nan & Zhang, Baoxue, 2012. "Model selection in binary and tobit quantile regression using the Gibbs sampler," Computational Statistics & Data Analysis, Elsevier, vol. 56(4), pages 827-839.
    5. repec:eee:stapro:v:128:y:2017:i:c:p:77-83 is not listed on IDEAS
    6. Alhamzawi, Rahim, 2016. "Bayesian model selection in ordinal quantile regression," Computational Statistics & Data Analysis, Elsevier, vol. 103(C), pages 68-78.
    7. Jensen, Mark J & Maheu, John M, 2013. "Risk, Return and Volatility Feedback: A Bayesian Nonparametric Analysis," MPRA Paper 52132, University Library of Munich, Germany.
    8. Karthik Sriram & R. V. Ramamoorthi & Pulak Ghosh, 2016. "On Bayesian Quantile Regression Using a Pseudo-joint Asymmetric Laplace Likelihood," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 78(1), pages 87-104, February.
    9. Norets, Andriy & Pelenis, Justinas, 2012. "Bayesian modeling of joint and conditional distributions," Journal of Econometrics, Elsevier, vol. 168(2), pages 332-346.

    More about this item


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bes:jnlbes:v:28:i:3:y:2010:p:357-369. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Christopher F. Baum). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.