IDEAS home Printed from https://ideas.repec.org/a/bes/jnlbes/v21y2003i1p12-18.html
   My bibliography  Save this article

Nonparametric Applications of Bayesian Inference

Author

Listed:
  • Chamberlain, Gary
  • Imbens, Guido W

Abstract

This article evaluates the usefulness of a nonparametric approach to Bayesian inference by presenting two applications. Our first application considers an educational choice problem. We focus on obtaining a predictive distribution for earnings corresponding to various levels of schooling. This predictive distribution incorporates the parameter uncertainty, so that it is relevant for decision making under uncertainty in the expected utility framework of microeconomics. The second application is to quantile regression. Our point here is to examine the potential of the nonparametric framework to provide inferences without relying on asymptotic approximations. Unlike in the first application, the standard asymptotic normal approximation turns out not to be a good guide.

Suggested Citation

  • Chamberlain, Gary & Imbens, Guido W, 2003. "Nonparametric Applications of Bayesian Inference," Journal of Business & Economic Statistics, American Statistical Association, vol. 21(1), pages 12-18, January.
  • Handle: RePEc:bes:jnlbes:v:21:y:2003:i:1:p:12-18
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Other versions of this item:

    References listed on IDEAS

    as
    1. repec:cup:etheor:v:11:y:1995:i:1:p:105-21 is not listed on IDEAS
    2. Hansen, Lars Peter, 1982. "Large Sample Properties of Generalized Method of Moments Estimators," Econometrica, Econometric Society, vol. 50(4), pages 1029-1054, July.
    3. Meyer, Bruce D & Viscusi, W Kip & Durbin, David L, 1995. "Workers' Compensation and Injury Duration: Evidence from a Natural Experiment," American Economic Review, American Economic Association, vol. 85(3), pages 322-340, June.
    4. Koenker, Roger W & Bassett, Gilbert, Jr, 1978. "Regression Quantiles," Econometrica, Econometric Society, vol. 46(1), pages 33-50, January.
    5. Florens, J.P. & Rolin, J.M., 1994. "Bayes, Bootsrap, Moments," Papers 94.336, Toulouse - GREMAQ.
    6. Koenker, Roger & Bassett, Gilbert, Jr, 1982. "Robust Tests for Heteroscedasticity Based on Regression Quantiles," Econometrica, Econometric Society, vol. 50(1), pages 43-61, January.
    7. Kandel, Shmuel & Stambaugh, Robert F, 1996. " On the Predictability of Stock Returns: An Asset-Allocation Perspective," Journal of Finance, American Finance Association, vol. 51(2), pages 385-424, June.
    8. Joshua D. Angrist & Alan B. Keueger, 1991. "Does Compulsory School Attendance Affect Schooling and Earnings?," The Quarterly Journal of Economics, Oxford University Press, vol. 106(4), pages 979-1014.
    9. Sims, Christopher A & Uhlig, Harald, 1991. "Understanding Unit Rooters: A Helicopter Tour," Econometrica, Econometric Society, vol. 59(6), pages 1591-1599, November.
    10. Hahn, Jinyong, 1995. "Bootstrapping Quantile Regression Estimators," Econometric Theory, Cambridge University Press, vol. 11(01), pages 105-121, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lee, Seojeong, 2016. "Asymptotic refinements of a misspecification-robust bootstrap for GEL estimators," Journal of Econometrics, Elsevier, vol. 192(1), pages 86-104.
    2. Chernozhukov, Victor & Fernández-Val, Iván & Kowalski, Amanda E., 2015. "Quantile regression with censoring and endogeneity," Journal of Econometrics, Elsevier, vol. 186(1), pages 201-221.
    3. Sylvia Frühwirth-Schnatter & Martin Halla & Alexandra Posekany & Gerald J. Pruckner & Thomas Schober, 2014. "The Quantity and Quality of Children: A Semi-Parametric Bayesian IV Approach," Economics working papers 2014-03, Department of Economics, Johannes Kepler University Linz, Austria.
    4. Zhichao Liu & Catherine Forbes & Heather Anderson, 2017. "Robust Bayesian exponentially tilted empirical likelihood method," Monash Econometrics and Business Statistics Working Papers 21/17, Monash University, Department of Econometrics and Business Statistics.
    5. Alexandre Belloni & Victor Chernozhukov & Denis Chetverikov & Iv'an Fern'andez-Val, 2011. "Conditional Quantile Processes based on Series or Many Regressors," Papers 1105.6154, arXiv.org, revised Jul 2017.
    6. Chernozhukov, Victor & Fernández-Val, Iván & Hoderlein, Stefan & Holzmann, Hajo & Newey, Whitney, 2015. "Nonparametric identification in panels using quantiles," Journal of Econometrics, Elsevier, vol. 188(2), pages 378-392.
    7. David M. Kaplan & Longhao Zhuo, 2015. "Frequentist size of Bayesian inequality tests," Working Papers 1709, Department of Economics, University of Missouri, revised 26 Feb 2018.
    8. Jesús Fernández-Villaverde, 2010. "The econometrics of DSGE models," SERIEs: Journal of the Spanish Economic Association, Springer;Spanish Economic Association, vol. 1(1), pages 3-49, March.
    9. Halla, Martin & Zweimüller, Martina, 2014. "Parental Response to Early Human Capital Shocks: Evidence from the Chernobyl Accident," IZA Discussion Papers 7968, Institute for the Study of Labor (IZA).
    10. Seojeong Lee, 2018. "Asymptotic Refinements of a Misspecification-Robust Bootstrap for Generalized Empirical Likelihood Estimators," Papers 1806.00953, arXiv.org, revised Jun 2018.
    11. Vasilis Syrgkanis & Elie Tamer & Juba Ziani, 2017. "Inference on Auctions with Weak Assumptions on Information," Papers 1710.03830, arXiv.org, revised Mar 2018.
    12. Tony Lancaster & Sung Jae Jun, 2010. "Bayesian quantile regression methods," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 25(2), pages 287-307.
    13. repec:eee:econom:v:200:y:2017:i:2:p:282-294 is not listed on IDEAS
    14. Jiang, Rong & Zhou, Zhan-Gong & Qian, Wei-Min & Chen, Yong, 2013. "Two step composite quantile regression for single-index models," Computational Statistics & Data Analysis, Elsevier, vol. 64(C), pages 180-191.
    15. Dale Poirier, 2008. "Bayesian Interpretations of Heteroskedastic Consistent Covariance Estimators Using the Informed Bayesian Bootstrap," Working Papers 080905, University of California-Irvine, Department of Economics.
    16. Lin, Eric S. & Chou, Ta-Sheng, 2012. "A note on Bayesian interpretations of HCCME-type refinements for nonlinear GMM models," Economics Letters, Elsevier, vol. 116(3), pages 494-497.
    17. Giuseppe Ragusa, 2007. "Bayesian Likelihoods for Moment Condition Models," Working Papers 060714, University of California-Irvine, Department of Economics.
    18. Sung Jae Jun & Tony Lancaster, 2006. "Bayesian quantile regression," CeMMAP working papers CWP05/06, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    19. Paserman, M. Daniele, 2004. "Bayesian Inference for Duration Data with Unobserved and Unknown Heterogeneity: Monte Carlo Evidence and an Application," IZA Discussion Papers 996, Institute for the Study of Labor (IZA).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bes:jnlbes:v:21:y:2003:i:1:p:12-18. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Christopher F. Baum). General contact details of provider: http://www.amstat.org/publications/jbes/index.cfm?fuseaction=main .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.