IDEAS home Printed from https://ideas.repec.org/a/taf/jenpmg/v59y2016i6p948-966.html
   My bibliography  Save this article

Carbon emission reduction and cost--benefit of methane digester systems on hog farms in China

Author

Listed:
  • T. Chen
  • M. Liu
  • Y. Takahashi
  • J.D. Mullen
  • G.C.W. Ames

Abstract

Three different sizes of hog farms were selected to analyze the carbon emissions reduction and the cost--benefit of three methane digester systems. The sizes of the digesters are 2,200, 2,200 and 800 m-super-3, respectively. The sales of slaughter hogs from them are 50,000, 35,000 and 10,000 head, respectively. The carbon emissions reductions were 5,237, 4,017, and 1,334 tons, respectively. The results show that while the methane digester systems have a significant effect on carbon emissions reduction, it is difficult to operate the systems sustainably. If the carbon emissions reduction can be traded at high enough prices in the carbon offset markets, then the systems will be profitable and sustainable. Newly established China's domestic carbon offset market could provide this possibility, but more government support is needed. In addition, this study shows that scale economies make the digester adoption relatively more profitable for larger farms than smaller ones.

Suggested Citation

  • T. Chen & M. Liu & Y. Takahashi & J.D. Mullen & G.C.W. Ames, 2016. "Carbon emission reduction and cost--benefit of methane digester systems on hog farms in China," Journal of Environmental Planning and Management, Taylor & Francis Journals, vol. 59(6), pages 948-966, June.
  • Handle: RePEc:taf:jenpmg:v:59:y:2016:i:6:p:948-966
    DOI: 10.1080/09640568.2015.1050484
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/09640568.2015.1050484
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/09640568.2015.1050484?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Anderson, Robert C. & Hilborn, Don & Weersink, Alfons, 2013. "An economic and functional tool for assessing the financial feasibility of farm-based anaerobic digesters," Renewable Energy, Elsevier, vol. 51(C), pages 85-92.
    2. DeVuyst, Eric A. & Pryor, Scott W. & Lardy, Greg & Eide, Wallace & Wiederholt, Ron, 2011. "Cattle, ethanol, and biogas: Does closing the loop make economic sense?," Agricultural Systems, Elsevier, vol. 104(8), pages 609-614, October.
    3. William F. Lazarus & Margaretha Rudstrom, 2007. "The Economics of Anaerobic Digester Operation on a Minnesota Dairy Farm," Review of Agricultural Economics, Agricultural and Applied Economics Association, vol. 29(2), pages 349-364.
    4. Kay Camarillo, Mary & Stringfellow, William T. & Jue, Michael B. & Hanlon, Jeremy S., 2012. "Economic sustainability of a biomass energy project located at a dairy in California, USA," Energy Policy, Elsevier, vol. 48(C), pages 790-798.
    5. William F. Lazarus & Margaretha Rudstrom, 2007. "The Economics of Anaerobic Digester Operation on a Minnesota Dairy Farm," Review of Agricultural Economics, Agricultural and Applied Economics Association, vol. 29(2), pages 349-364.
    6. Key, Nigel D. & Sneeringer, Stacy E., 2011. "Climate Change Policy and the Adoption of Methane Digesters on Livestock Operations," Economic Research Report 102758, United States Department of Agriculture, Economic Research Service.
    7. Jeffrey R. Stokes & Rekha M. Rajagopalan & Spiro E. Stefanou, 2008. "Investment in a Methane Digester: An Application of Capital Budgeting and Real Options," Review of Agricultural Economics, Agricultural and Applied Economics Association, vol. 30(4), pages 664-676.
    8. Brent A. Gloy & Jonathan B. Dressler, 2010. "Financial barriers to the adoption of anaerobic digestion on US livestock operations," Agricultural Finance Review, Emerald Group Publishing Limited, vol. 70(2), pages 157-168, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Xue & Mupondwa, Edmund, 2018. "Commercial feasibility of an integrated closed-loop ethanol-feedlot-biodigester system based on triticale feedstock in Canadian Prairies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 97(C), pages 401-413.
    2. Cowley, Cortney & Brorsen, B. Wade, 2018. "Anaerobic Digester Production and Cost Functions," Ecological Economics, Elsevier, vol. 152(C), pages 347-357.
    3. Robert C. Anderson & Alfons Weersink, 2014. "A Real Options Approach for the Investment Decisions of a Farm-Based Anaerobic Digester," Canadian Journal of Agricultural Economics/Revue canadienne d'agroeconomie, Canadian Agricultural Economics Society/Societe canadienne d'agroeconomie, vol. 62(1), pages 69-87, March.
    4. Di Corato, Luca & Moretto, Michele, 2011. "Investing in biogas: Timing, technological choice and the value of flexibility from input mix," Energy Economics, Elsevier, vol. 33(6), pages 1186-1193.
    5. Key, Nigel & Sneeringer, Stacy, 2012. "Carbon Emissions, Renewable Electricity, and Profits: Comparing Policies to Promote Anaerobic Digesters on Dairies," Agricultural and Resource Economics Review, Cambridge University Press, vol. 41(2), pages 139-157, August.
    6. Namuli, R. & Pillay, P. & Jaumard, B. & Laflamme, C.B., 2013. "Threshold herd size for commercial viability of biomass waste to energy conversion systems on rural farms," Applied Energy, Elsevier, vol. 108(C), pages 308-322.
    7. Willeghems, Gwen & Buysse, Jeroen, 2016. "Changing old habits: The case of feeding patterns in anaerobic digesters," Renewable Energy, Elsevier, vol. 92(C), pages 212-221.
    8. Cowley, Cortney & Brorsen, B. Wade & Hamilton, Doug, 2014. "Economic Feasibility of Anaerobic Digesters with Swine Operations," 2014 Annual Meeting, July 27-29, 2014, Minneapolis, Minnesota 170621, Agricultural and Applied Economics Association.
    9. DeVuyst, Eric A. & Pryor, Scott W. & Lardy, Greg & Eide, Wallace & Wiederholt, Ron, 2011. "Cattle, ethanol, and biogas: Does closing the loop make economic sense?," Agricultural Systems, Elsevier, vol. 104(8), pages 609-614, October.
    10. Benavidez, Justin R. & Thayer, Anastasia W. & Anderson, David P., 2019. "Poo Power: Revisiting Biogas Generation Potential on Dairy Farms in Texas," Journal of Agricultural and Applied Economics, Cambridge University Press, vol. 51(4), pages 682-700, November.
    11. Benavidez, Justin & Thayer, Anastasia W., 2018. "Poo Power: Revisiting Energy Generation from Biogas on Dairies in Texas," 2018 Annual Meeting, February 2-6, 2018, Jacksonville, Florida 266636, Southern Agricultural Economics Association.
    12. Megan Swindal & Gilbert Gillespie & Rick Welsh, 2010. "Community digester operations and dairy farmer perspectives," Agriculture and Human Values, Springer;The Agriculture, Food, & Human Values Society (AFHVS), vol. 27(4), pages 461-474, December.
    13. Ciliberti, Carlo & Jordaan, Sarah M. & Smith, Stephen V. & Spatari, Sabrina, 2016. "A life cycle perspective on land use and project economics of electricity from wind and anaerobic digestion," Energy Policy, Elsevier, vol. 89(C), pages 52-63.
    14. Siegmeier, Torsten & Blumenstein, Benjamin & Möller, Detlev, 2015. "Farm biogas production in organic agriculture: System implications," Agricultural Systems, Elsevier, vol. 139(C), pages 196-209.
    15. Rojas-Downing, M. Melissa & Harrigan, Timothy & Nejadhashemi, A. Pouyan, 2017. "Resource use and economic impacts in the transition from small confinement to pasture-based dairies," Agricultural Systems, Elsevier, vol. 153(C), pages 157-171.
    16. Yakubu Abdul-Salam & Melf-Hinrich Ehlers & Jelte Harnmeijer, 2017. "Anaerobic Digestion of Feedstock Grown on Marginal Land: Break-Even Electricity Prices," Energies, MDPI, vol. 10(9), pages 1-21, September.
    17. Gloy, Brent A., 2010. "Carbon Dioxide Offsets from Anaerobic Digestion of Dairy Waste," Working Papers 126750, Cornell University, Department of Applied Economics and Management.
    18. White, Andrew J. & Kirk, Donald W. & Graydon, John W., 2011. "Analysis of small-scale biogas utilization systems on Ontario cattle farms," Renewable Energy, Elsevier, vol. 36(3), pages 1019-1025.
    19. Liebrand, Carolyn Betts & Ling, K. Charles, 2009. "Cooperative Approaches for Implementation of Dairy Manure Digesters," Research Reports 280105, United States Department of Agriculture, Rural Development.
    20. Kay Camarillo, Mary & Stringfellow, William T. & Jue, Michael B. & Hanlon, Jeremy S., 2012. "Economic sustainability of a biomass energy project located at a dairy in California, USA," Energy Policy, Elsevier, vol. 48(C), pages 790-798.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:jenpmg:v:59:y:2016:i:6:p:948-966. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/CJEP20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.