IDEAS home Printed from https://ideas.repec.org/p/ags/uersrr/102758.html
   My bibliography  Save this paper

Climate Change Policy and the Adoption of Methane Digesters on Livestock Operations

Author

Listed:
  • Key, Nigel D.
  • Sneeringer, Stacy E.

Abstract

Methane digesters—biogas recovery systems that use methane from manure to generate electricity—have not been widely adopted in the United States because costs have exceeded benefits to operators. Burning methane in a digester reduces greenhouse gas emissions from manure management. A policy or program that pays producers for these emission reductions—through a carbon offset market or directly with payments—could increase the number of livestock producers who would profit from adopting a methane digester. We developed an economic model that illustrates how dairy and hog operation size, location, and manure management methods, along with electricity and carbon prices, could influence methane digester profits. The model shows that a relatively moderate increase in the price of carbon could induce significantly more dairy and hog operations, particularly large ones, to adopt a methane digester, thereby substantially lowering emissions of greenhouse gases.

Suggested Citation

  • Key, Nigel D. & Sneeringer, Stacy E., 2011. "Climate Change Policy and the Adoption of Methane Digesters on Livestock Operations," Economic Research Report 102758, United States Department of Agriculture, Economic Research Service.
  • Handle: RePEc:ags:uersrr:102758
    DOI: 10.22004/ag.econ.102758
    as

    Download full text from publisher

    File URL: https://ageconsearch.umn.edu/record/102758/files/ERR111.pdf
    Download Restriction: no

    File URL: https://libkey.io/10.22004/ag.econ.102758?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Leuer, Elizabeth R. & Hyde, Jeffrey & Richard, Tom L., 2008. "Investing in Methane Digesters on Pennsylvania Dairy Farms: Implications of Scale Economies and Environmental Programs," Agricultural and Resource Economics Review, Cambridge University Press, vol. 37(2), pages 188-203, October.
    2. Leuer, Elizabeth R. & Hyde, Jeffrey & Richard, Tom L., 2008. "Investing in Methane Digesters on Pennsylvania Dairy Farms: Implication of Scale Economies and Environmental Programs," Agricultural and Resource Economics Review, Northeastern Agricultural and Resource Economics Association, vol. 37(2), pages 1-16.
    3. Denley, Jonathan & Herndon, Cary W., Jr., 2008. "Financial Analysis of Implementing an Anaerobic Digester and Free Stall Barn System on a Mississippi Dairy Farm," 2008 Annual Meeting, February 2-6, 2008, Dallas, Texas 6786, Southern Agricultural Economics Association.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Borchers, Allison M. & Xiarchos, Irene & Beckman, Jayson, 2014. "Determinants of wind and solar energy system adoption by U.S. farms: A multilevel modeling approach," Energy Policy, Elsevier, vol. 69(C), pages 106-115.
    2. Abhinav Choudhury & Timothy Shelford & Gary Felton & Curt Gooch & Stephanie Lansing, 2019. "Evaluation of Hydrogen Sulfide Scrubbing Systems for Anaerobic Digesters on Two U.S. Dairy Farms," Energies, MDPI, vol. 12(24), pages 1-13, December.
    3. Key, Nigel & Sneeringer, Stacy, 2012. "Carbon Emissions, Renewable Electricity, and Profits: Comparing Policies to Promote Anaerobic Digesters on Dairies," Agricultural and Resource Economics Review, Cambridge University Press, vol. 41(2), pages 139-157, August.
    4. Sands, Ron & Westcott, Paul & Price, J. Michael & Beckman, Jayson & Leibtag, Ephraim & Lucier, Gary & McBride, William D. & McGranahan, David & Morehart, Mitch & Roeger, Edward & Schaible, Glenn & Woj, 2011. "Impacts of Higher Energy Prices on Agriculture and Rural Economies," Economic Research Report 262236, United States Department of Agriculture, Economic Research Service.
    5. Hitaj, Claudia & Suttles, Shellye, 2016. "Trends in U.S. Agriculture's Consumption and Production of Energy: Renewable Power, Shale Energy, and Cellulosic Biomass," Economic Information Bulletin 262140, United States Department of Agriculture, Economic Research Service.
    6. T. Chen & M. Liu & Y. Takahashi & J.D. Mullen & G.C.W. Ames, 2016. "Carbon emission reduction and cost--benefit of methane digester systems on hog farms in China," Journal of Environmental Planning and Management, Taylor & Francis Journals, vol. 59(6), pages 948-966, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lauer, Markus & Hansen, Jason K. & Lamers, Patrick & Thrän, Daniela, 2018. "Making money from waste: The economic viability of producing biogas and biomethane in the Idaho dairy industry," Applied Energy, Elsevier, vol. 222(C), pages 621-636.
    2. Cowley, Cortney & Brorsen, B. Wade, 2018. "Anaerobic Digester Production and Cost Functions," Ecological Economics, Elsevier, vol. 152(C), pages 347-357.
    3. Yakubu Abdul-Salam & Melf-Hinrich Ehlers & Jelte Harnmeijer, 2017. "Anaerobic Digestion of Feedstock Grown on Marginal Land: Break-Even Electricity Prices," Energies, MDPI, vol. 10(9), pages 1-21, September.
    4. Gloy, Brent A., 2010. "Carbon Dioxide Offsets from Anaerobic Digestion of Dairy Waste," Working Papers 126750, Cornell University, Department of Applied Economics and Management.
    5. Benavidez, Justin R. & Thayer, Anastasia W. & Anderson, David P., 2019. "Poo Power: Revisiting Biogas Generation Potential on Dairy Farms in Texas," Journal of Agricultural and Applied Economics, Cambridge University Press, vol. 51(4), pages 682-700, November.
    6. Binkley, David & Harsh, Stephen & Wolf, Christopher A. & Safferman, Steven & Kirk, Dana, 2013. "Electricity purchase agreements and distributed energy policies for anaerobic digesters," Energy Policy, Elsevier, vol. 53(C), pages 341-352.
    7. Borchers, Allison M. & Xiarchos, Irene & Beckman, Jayson, 2014. "Determinants of wind and solar energy system adoption by U.S. farms: A multilevel modeling approach," Energy Policy, Elsevier, vol. 69(C), pages 106-115.
    8. Li, Xue & Mupondwa, Edmund, 2018. "Commercial feasibility of an integrated closed-loop ethanol-feedlot-biodigester system based on triticale feedstock in Canadian Prairies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 97(C), pages 401-413.
    9. Key, Nigel & Sneeringer, Stacy, 2012. "Carbon Emissions, Renewable Electricity, and Profits: Comparing Policies to Promote Anaerobic Digesters on Dairies," Agricultural and Resource Economics Review, Cambridge University Press, vol. 41(2), pages 139-157, August.
    10. Key, Nigel D. & Sneeringer, Stacy E., 2011. "Carbon Emissions, Renewable Electricity and Profits: Comparing Alternative Policies to Promote Anaerobic Digesters on Dairies," 2011 Annual Meeting, July 24-26, 2011, Pittsburgh, Pennsylvania 103440, Agricultural and Applied Economics Association.
    11. Benavidez, Justin & Thayer, Anastasia W., 2018. "Poo Power: Revisiting Energy Generation from Biogas on Dairies in Texas," 2018 Annual Meeting, February 2-6, 2018, Jacksonville, Florida 266636, Southern Agricultural Economics Association.

    More about this item

    Keywords

    Environmental Economics and Policy; Financial Economics; Livestock Production/Industries; Resource /Energy Economics and Policy;
    All these keywords.

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ags:uersrr:102758. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: AgEcon Search (email available below). General contact details of provider: https://edirc.repec.org/data/ersgvus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.