IDEAS home Printed from https://ideas.repec.org/a/taf/intgms/v15y2015i3p489-505.html
   My bibliography  Save this article

Impulsivity and predictive control are associated with suboptimal action-selection and action-value learning in regular gamblers

Author

Listed:
  • M.S.M. Lim
  • G. Jocham
  • L.T. Hunt
  • T.E.J. Behrens
  • R.D. Rogers

Abstract

Heightened impulsivity and cognitive biases are risk factors for gambling problems. However, little is known about precisely how these factors increase the risks of gambling-related harm in vulnerable individuals. Here, we modelled the behaviour of 87 community-recruited regular, but not clinically problematic, gamblers during a binary-choice reinforcement-learning game, to characterize the relationships between impulsivity, cognitive biases and the capacity to make optimal action selections and learn about action-values. Impulsive gamblers showed diminished use of an optimal (Bayesian-derived) probability estimate when selecting between candidate actions, and showed slower learning rates and enhanced non-linear probability weighting while learning action values. Critically, gamblers who believed that it is possible to predict winning outcomes (as 'predictive control') failed to use the game's reinforcement history to guide their action selections. Extensive evidence attests to the ease with which gamblers can erroneously perceive structure in the reinforcement history of games when there is none. Our findings demonstrate that the generic and specific risk factors of impulsivity and cognitive biases can interfere with the capacity of some gamblers to utilize structure when it is available in the reinforcement history of games, potentially increasing their risks of sustaining gambling-related harms.

Suggested Citation

  • M.S.M. Lim & G. Jocham & L.T. Hunt & T.E.J. Behrens & R.D. Rogers, 2015. "Impulsivity and predictive control are associated with suboptimal action-selection and action-value learning in regular gamblers," International Gambling Studies, Taylor & Francis Journals, vol. 15(3), pages 489-505, December.
  • Handle: RePEc:taf:intgms:v:15:y:2015:i:3:p:489-505
    DOI: 10.1080/14459795.2015.1078835
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/14459795.2015.1078835
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Rachel Croson & James Sundali, 2005. "The Gambler’s Fallacy and the Hot Hand: Empirical Data from Casinos," Journal of Risk and Uncertainty, Springer, vol. 30(3), pages 195-209, May.
    2. Tversky, Amos & Kahneman, Daniel, 1992. "Advances in Prospect Theory: Cumulative Representation of Uncertainty," Journal of Risk and Uncertainty, Springer, vol. 5(4), pages 297-323, October.
    3. Amos Tversky & Daniel Kahneman, 1991. "Loss Aversion in Riskless Choice: A Reference-Dependent Model," The Quarterly Journal of Economics, Oxford University Press, vol. 106(4), pages 1039-1061.
    4. Lattimore, Pamela K. & Baker, Joanna R. & Witte, Ann D., 1992. "The influence of probability on risky choice: A parametric examination," Journal of Economic Behavior & Organization, Elsevier, vol. 17(3), pages 377-400, May.
    5. Kahneman, Daniel & Tversky, Amos, 1979. "Prospect Theory: An Analysis of Decision under Risk," Econometrica, Econometric Society, vol. 47(2), pages 263-291, March.
    6. Pamela K. Lattimore & Joanna R. Baker & A. Dryden Witte, 1992. "The Influence Of Probability on Risky Choice: A parametric Examination," NBER Technical Working Papers 0081, National Bureau of Economic Research, Inc.
    Full references (including those not matched with items on IDEAS)

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:intgms:v:15:y:2015:i:3:p:489-505. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Chris Longhurst). General contact details of provider: http://www.tandfonline.com/RIGS20 .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.