IDEAS home Printed from
   My bibliography  Save this article

Making Descriptive Use of Prospect Theory to Improve the Prescriptive Use of Expected Utility


  • Han Bleichrodt

    () (iMTA, Erasmus University, P.O. Box 1738, Rotterdam, 3000 DR, The Netherlands)

  • Jose Luis Pinto

    () (Department of Economics, Universitat Pompeu Fabra, Ramon Trias Fargas, 25-27, 08005, Barcelona, Spain)

  • Peter P. Wakker

    () (Medical Decision Making Unit, LUMC, P.O. Box 9600, Leiden, 2300 RC, The Netherlands)


This paper proposes a quantitative modification of standard utility elicitation procedures, such as the probability and certainty equivalence methods, to correct for commonly observed violations of expected utility. Traditionally, decision analysis assumes expected utility not only for the prescriptive purpose of calculating optimal decisions but also for the descriptive purpose of eliciting utilities. However, descriptive violations of expected utility bias utility elicitations. That such biases are effective became clear when systematic discrepancies were found between different utility elicitation methods that, under expected utility, should have yielded identical utilities. As it is not clear how to correct for these biases without further knowledge of their size or nature, most utility elicitations still calculate utilities by means of the expected utility formula. This paper speculates on the biases and their sizes by using the quantitative assessments of probability transformation and loss aversion suggested by prospect theory. It presents quantitative corrections for the probability and certainty equivalence methods. If interactive sessions to correct for biases are not possible, then the authors propose to use the corrected utilities rather than the uncorrected ones in prescriptions of optimal decisions. In an experiment, the discrepancies between the probability and certainty equivalence methods are removed by the authors' proposal.

Suggested Citation

  • Han Bleichrodt & Jose Luis Pinto & Peter P. Wakker, 2001. "Making Descriptive Use of Prospect Theory to Improve the Prescriptive Use of Expected Utility," Management Science, INFORMS, vol. 47(11), pages 1498-1514, November.
  • Handle: RePEc:inm:ormnsc:v:47:y:2001:i:11:p:1498-1514

    Download full text from publisher

    File URL:
    Download Restriction: no

    References listed on IDEAS

    1. Mark McCord & Richard de Neufville, 1986. ""Lottery Equivalents": Reduction of the Certainty Effect Problem in Utility Assessment," Management Science, INFORMS, vol. 32(1), pages 56-60, January.
    2. Segal, Uzi, 1990. "Two-Stage Lotteries without the Reduction Axiom," Econometrica, Econometric Society, vol. 58(2), pages 349-377, March.
    3. Gregory W. Fischer & Mark S. Kamlet & Stephen E. Fienberg & David Schkade, 1986. "Risk Preferences for Gains and Losses in Multiple Objective Decision Making," Management Science, INFORMS, vol. 32(9), pages 1065-1086, September.
    4. Camerer, Colin F & Hogarth, Robin M, 1999. "The Effects of Financial Incentives in Experiments: A Review and Capital-Labor-Production Framework," Journal of Risk and Uncertainty, Springer, vol. 19(1-3), pages 7-42, December.
    5. David Buschena & David Zilberman, 2008. "Generalized expected utility, heteroscedastic error, and path dependence in risky choice," Journal of Risk and Uncertainty, Springer, vol. 36(2), pages 201-201, April.
    6. Tversky, Amos & Kahneman, Daniel, 1992. "Advances in Prospect Theory: Cumulative Representation of Uncertainty," Journal of Risk and Uncertainty, Springer, vol. 5(4), pages 297-323, October.
    7. Ian Bateman & Alistair Munro & Bruce Rhodes & Chris Starmer & Robert Sugden, 1997. "A Test of the Theory of Reference-Dependent Preferences," The Quarterly Journal of Economics, Oxford University Press, vol. 112(2), pages 479-505.
    8. Hey, John D & Orme, Chris, 1994. "Investigating Generalizations of Expected Utility Theory Using Experimental Data," Econometrica, Econometric Society, vol. 62(6), pages 1291-1326, November.
    9. Han Bleichrodt & Jose Luis Pinto, 2000. "A Parameter-Free Elicitation of the Probability Weighting Function in Medical Decision Analysis," Management Science, INFORMS, vol. 46(11), pages 1485-1496, November.
    10. Amos Tversky & Daniel Kahneman, 1991. "Loss Aversion in Riskless Choice: A Reference-Dependent Model," The Quarterly Journal of Economics, Oxford University Press, vol. 106(4), pages 1039-1061.
    11. Loomes, Graham & Sugden, Robert, 1982. "Regret Theory: An Alternative Theory of Rational Choice under Uncertainty," Economic Journal, Royal Economic Society, vol. 92(368), pages 805-824, December.
    12. Peter Wakker & Daniel Deneffe, 1996. "Eliciting von Neumann-Morgenstern Utilities When Probabilities Are Distorted or Unknown," Management Science, INFORMS, vol. 42(8), pages 1131-1150, August.
    13. Jonathan Shalev, 2000. "Loss aversion equilibrium," International Journal of Game Theory, Springer;Game Theory Society, vol. 29(2), pages 269-287.
    14. Payne, John W & Bettman, James R & Schkade, David A, 1999. "Measuring Constructed Preferences: Towards a Building Code," Journal of Risk and Uncertainty, Springer, vol. 19(1-3), pages 243-270, December.
    15. Harless, David W & Camerer, Colin F, 1994. "The Predictive Utility of Generalized Expected Utility Theories," Econometrica, Econometric Society, vol. 62(6), pages 1251-1289, November.
    16. William Fellner, 1961. "Distortion of Subjective Probabilities as a Reaction to Uncertainty," The Quarterly Journal of Economics, Oxford University Press, vol. 75(4), pages 670-689.
    17. Richardson, J., 1994. "Cost utility analysis: What should be measured?," Social Science & Medicine, Elsevier, vol. 39(1), pages 7-21, July.
    18. John C. Hershey & Paul J. H. Schoemaker, 1985. "Probability Versus Certainty Equivalence Methods in Utility Measurement: Are they Equivalent?," Management Science, INFORMS, vol. 31(10), pages 1213-1231, October.
    19. John C. Harsanyi, 1955. "Cardinal Welfare, Individualistic Ethics, and Interpersonal Comparisons of Utility," Journal of Political Economy, University of Chicago Press, vol. 63, pages 309-309.
    20. Daniel Ellsberg, 1961. "Risk, Ambiguity, and the Savage Axioms," The Quarterly Journal of Economics, Oxford University Press, vol. 75(4), pages 643-669.
    21. Lattimore, Pamela K. & Baker, Joanna R. & Witte, Ann D., 1992. "The influence of probability on risky choice: A parametric examination," Journal of Economic Behavior & Organization, Elsevier, vol. 17(3), pages 377-400, May.
    22. Eric J. Johnson & David A. Schkade, 1989. "Bias in Utility Assessments: Further Evidence and Explanations," Management Science, INFORMS, vol. 35(4), pages 406-424, April.
    23. Machina, Mark J, 1982. ""Expected Utility" Analysis without the Independence Axiom," Econometrica, Econometric Society, vol. 50(2), pages 277-323, March.
    24. Kahneman, Daniel & Tversky, Amos, 1979. "Prospect Theory: An Analysis of Decision under Risk," Econometrica, Econometric Society, vol. 47(2), pages 263-291, March.
    25. Pamela K. Lattimore & Joanna R. Baker & A. Dryden Witte, 1992. "The Influence Of Probability on Risky Choice: A parametric Examination," NBER Technical Working Papers 0081, National Bureau of Economic Research, Inc.
    26. Schmeidler, David, 1989. "Subjective Probability and Expected Utility without Additivity," Econometrica, Econometric Society, vol. 57(3), pages 571-587, May.
    27. R. R. Officer & A. N. Halter, 1968. "Utility Analysis in a Practical Setting," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 50(2), pages 257-277.
    28. Torrance, George W., 1986. "Measurement of health state utilities for economic appraisal : A review," Journal of Health Economics, Elsevier, vol. 5(1), pages 1-30, March.
    29. Dolan, P. & Gudex, C. & Kind, P. & Williams, A., 1996. "Valuing health states: A comparison of methods," Journal of Health Economics, Elsevier, vol. 15(2), pages 209-231, April.
    30. Mohammed Abdellaoui, 2000. "Parameter-Free Elicitation of Utility and Probability Weighting Functions," Management Science, INFORMS, vol. 46(11), pages 1497-1512, November.
    Full references (including those not matched with items on IDEAS)


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:ormnsc:v:47:y:2001:i:11:p:1498-1514. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Mirko Janc). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.