Rise of the machines? Intraday high-frequency trading patterns of cryptocurrencies
Author
Abstract
Suggested Citation
DOI: 10.1080/1351847X.2020.1789684
Download full text from publisher
As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.
Other versions of this item:
- Alla A. Petukhina & Raphael C. G. Reule & Wolfgang Karl Hardle, 2020. "Rise of the Machines? Intraday High-Frequency Trading Patterns of Cryptocurrencies," Papers 2009.04200, arXiv.org.
- Petukhina, Alla A. & Reule, Raphael C. G. & Härdle, Wolfgang Karl, 2019. "Rise of the Machines? Intraday High-Frequency Trading Patterns of Cryptocurrencies," IRTG 1792 Discussion Papers 2019-020, Humboldt University of Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series".
References listed on IDEAS
- Chen, Cathy Yi-Hsuan & Härdle, Wolfgang Karl & Klochkov, Yegor, 2019. "SONIC: SOcial Network with Influencers and Communities," IRTG 1792 Discussion Papers 2019-025, Humboldt University of Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series".
- Guglielmo Caporale & Luis Gil-Alana & Alex Plastun & Inna Makarenko, 2016.
"Intraday Anomalies and Market Efficiency: A Trading Robot Analysis,"
Computational Economics, Springer;Society for Computational Economics, vol. 47(2), pages 275-295, February.
- Guglielmo Maria Caporale & Luis A. Gil-Alana & Alex Plastun & Inna Makarenko, 2014. "Intraday Anomalies and Market Efficiency: A Trading Robot Analysis," CESifo Working Paper Series 4752, CESifo.
- Guglielmo Maria Caporale & Luis Gil-Alana & Alex Plastun & Inna Makarenko, 2014. "Intraday Anomalies and Market Efficiency: A Trading Robot Analysis," Discussion Papers of DIW Berlin 1377, DIW Berlin, German Institute for Economic Research.
- Caporale, Guglielmo Maria & Plastun, Alex, 2019.
"The day of the week effect in the cryptocurrency market,"
Finance Research Letters, Elsevier, vol. 31(C).
- Guglielmo Maria Caporale & Alex Plastun, 2017. "The Day of the Week Effect in the Crypto Currency Market," Discussion Papers of DIW Berlin 1694, DIW Berlin, German Institute for Economic Research.
- Guglielmo Maria Caporale & Alex Plastun, 2017. "The Day of the Week Effect in the Crypto Currency Market," CESifo Working Paper Series 6716, CESifo.
- Vincent Bogousslavsky, 2016. "Infrequent Rebalancing, Return Autocorrelation, and Seasonality," Journal of Finance, American Finance Association, vol. 71(6), pages 2967-3006, December.
- Steven L. Heston & Robert A. Korajczyk & Ronnie Sadka, 2010.
"Intraday Patterns in the Cross‐section of Stock Returns,"
Journal of Finance, American Finance Association, vol. 65(4), pages 1369-1407, August.
- Steven L. Heston & Robert A. Korajczyk & Ronnie Sadka, 2010. "Intraday Patterns in the Cross-section of Stock Returns," Papers 1005.3535, arXiv.org.
- Kari Harju & Syed Mujahid Hussain, 2011. "Intraday Seasonalities and Macroeconomic News Announcements," European Financial Management, European Financial Management Association, vol. 17(2), pages 367-390, March.
- Syed Basher & Perry Sadorsky, 2006.
"Day-of-the-week effects in emerging stock markets,"
Applied Economics Letters, Taylor & Francis Journals, vol. 13(10), pages 621-628.
- Syed A. Basher & Perry Sadorsky, 2004. "Day-of-the-week effects in emerging stock markets," Finance 0407017, University Library of Munich, Germany.
- repec:dau:papers:123456789/5478 is not listed on IDEAS
- Petukhina, Alla & Trimborn, Simon & Härdle, Wolfgang Karl & Elendner, Hermann, 2018. "Investing with cryptocurrencies - evaluating the potential of portfolio allocation strategies," IRTG 1792 Discussion Papers 2018-058, Humboldt University of Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series".
- M. P. Wand, 2017. "Fast Approximate Inference for Arbitrarily Large Semiparametric Regression Models via Message Passing," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(517), pages 137-168, January.
- Chen, Kun & Luo, Peng & Sun, Bianxia & Wang, Huaiqing, 2015. "Which stocks are profitable? A network method to investigate the effects of network structure on stock returns," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 436(C), pages 224-235.
- Trimborn, Simon & Härdle, Wolfgang Karl, 2018.
"CRIX an Index for cryptocurrencies,"
Journal of Empirical Finance, Elsevier, vol. 49(C), pages 107-122.
- Simon Trimborn & Wolfgang Karl Hardle, 2020. "CRIX an index for cryptocurrencies," Papers 2009.09782, arXiv.org.
- Trimborn, Simon & Härdle, Wolfgang Karl, 2020. "CRIX an Index for cryptocurrencies," IRTG 1792 Discussion Papers 2020-009, Humboldt University of Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series".
- Matthias Schnaubelt & Jonas Rende & Christopher Krauss, 2019. "Testing Stylized Facts of Bitcoin Limit Order Books," JRFM, MDPI, vol. 12(1), pages 1-30, February.
- Gayatri Tilak & Tamas Szell & Remy Chicheportiche & Anirban Chakraborti, 2012. "Study of statistical correlations in intraday and daily financial return time series," Papers 1204.5103, arXiv.org.
- Gourieroux, Christian & Jasiak, Joanna & Le Fol, Gaelle, 1999.
"Intra-day market activity,"
Journal of Financial Markets, Elsevier, vol. 2(3), pages 193-226, August.
- Gaëlle Le Fol & Christian Gourieroux, 1999. "Intra-day market activity," Post-Print halshs-00536268, HAL.
- Simon N. Wood & Yannig Goude & Simon Shaw, 2015. "Generalized additive models for large data sets," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 64(1), pages 139-155, January.
- Wei Zhang & Pengfei Wang & Xiao Li & Dehua Shen, 2018. "Some stylized facts of the cryptocurrency market," Applied Economics, Taylor & Francis Journals, vol. 50(55), pages 5950-5965, November.
- Simon N. Wood, 2004. "Stable and Efficient Multiple Smoothing Parameter Estimation for Generalized Additive Models," Journal of the American Statistical Association, American Statistical Association, vol. 99, pages 673-686, January.
- Lee, Junghoon & Youn, Janghyuk & Chang, Woojin, 2012. "Intraday volatility and network topological properties in the Korean stock market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(4), pages 1354-1360.
- Gayatri Tilak & Tamás Szell & Rémy Chicheportiche & Anirban Chakraborti, 2011. "Study of statistical correlations in intraday and daily financial return time series," Post-Print hal-00827947, HAL.
- Chen, Cathy Yi-Hsuan & Després, Roméo & Guo, Li & Renault, Thomas, 2019. "What makes cryptocurrencies special? Investor sentiment and return predictability during the bubble," IRTG 1792 Discussion Papers 2019-016, Humboldt University of Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series".
- Alla Petukhina & Simon Trimborn & Wolfgang Karl Härdle & Hermann Elendner, 2021.
"Investing with cryptocurrencies – evaluating their potential for portfolio allocation strategies,"
Quantitative Finance, Taylor & Francis Journals, vol. 21(11), pages 1825-1853, November.
- Alla Petukhina & Simon Trimborn & Wolfgang Karl Hardle & Hermann Elendner, 2020. "Investing with Cryptocurrencies -- evaluating their potential for portfolio allocation strategies," Papers 2009.04461, arXiv.org, revised Sep 2020.
- R. Cont, 2001. "Empirical properties of asset returns: stylized facts and statistical issues," Quantitative Finance, Taylor & Francis Journals, vol. 1(2), pages 223-236.
- Zinovyeva, Elizaveta & Härdle, Wolfgang Karl & Lessmann, Stefan, 2019. "Antisocial Online Behavior Detection Using Deep Learning," IRTG 1792 Discussion Papers 2019-029, Humboldt University of Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series".
- Zhang, Yuanyuan & Chan, Stephen & Chu, Jeffrey & Nadarajah, Saralees, 2019. "Stylised facts for high frequency cryptocurrency data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 513(C), pages 598-612.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Guo, Li & Sang, Bo & Tu, Jun & Wang, Yu, 2024. "Cross-cryptocurrency return predictability," Journal of Economic Dynamics and Control, Elsevier, vol. 163(C).
- M. Eren Akbiyik & Mert Erkul & Killian Kaempf & Vaiva Vasiliauskaite & Nino Antulov-Fantulin, 2021. "Ask "Who", Not "What": Bitcoin Volatility Forecasting with Twitter Data," Papers 2110.14317, arXiv.org, revised Dec 2022.
- Wen, Zhuzhu & Bouri, Elie & Xu, Yahua & Zhao, Yang, 2022. "Intraday return predictability in the cryptocurrency markets: Momentum, reversal, or both," The North American Journal of Economics and Finance, Elsevier, vol. 62(C).
- Donglian Ma & Hisashi Tanizaki, 2022. "Intraday patterns of price clustering in Bitcoin," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 8(1), pages 1-25, December.
- Jahanshahloo, Hossein & Corbet, Shaen & Oxley, Les, 2022. "Seeking sigma: Time-of-the-day effects on the Bitcoin network," Finance Research Letters, Elsevier, vol. 49(C).
- Konstantin Häusler & Hongyu Xia, 2022.
"Indices on cryptocurrencies: an evaluation,"
Digital Finance, Springer, vol. 4(2), pages 149-167, September.
- Häusler, Konstantin & Xia, Hongyu, 2021. "Indices on cryptocurrencies: An evaluation," IRTG 1792 Discussion Papers 2021-014, Humboldt University of Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series".
- Bennett, Donyetta & Mekelburg, Erik & Williams, T.H., 2023. "BeFi meets DeFi: A behavioral finance approach to decentralized finance asset pricing," Research in International Business and Finance, Elsevier, vol. 65(C).
- Zinovyev, Elizaveta & Reule, Raphael C. G. & Härdle, Wolfgang, 2021.
"Understanding Smart Contracts: Hype or hope?,"
IRTG 1792 Discussion Papers
2021-004, Humboldt University of Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series".
- Elizaveta Zinovyeva & Raphael C. G. Reule & Wolfgang Karl Hardle, 2021. "Understanding Smart Contracts: Hype or Hope?," Papers 2103.08447, arXiv.org.
- Ali Mehrban & Pegah Ahadian, 2024. "An adaptive network-based approach for advanced forecasting of cryptocurrency values," Papers 2401.05441, arXiv.org, revised Feb 2024.
- Olgun, Onur & Ekinci, Cumhur & Arıkan, Ramazan, 2024. "The performance of selected high-frequency trading proxies: An application on Turkish index futures market," Finance Research Letters, Elsevier, vol. 65(C).
- Ge, Hengshun & Yang, Haijun & Doukas, John A., 2024. "The optimal strategies of competitive high-frequency traders and effects on market liquidity," International Review of Economics & Finance, Elsevier, vol. 91(C), pages 653-679.
- Colombo, Jefferson A. & Cruz, Fernando I. L. & Paese, Luis H. Z. & Cortes, Renan X., 2021. "The diversification benefits of cryptocurrencies in multi-asset portfolios: cross-country evidence," Textos para discussão 542, FGV EESP - Escola de Economia de São Paulo, Fundação Getulio Vargas (Brazil).
- Almeida, José & Gonçalves, Tiago Cruz, 2023. "A systematic literature review of investor behavior in the cryptocurrency markets," Journal of Behavioral and Experimental Finance, Elsevier, vol. 37(C).
- Wang, Yifu & Lu, Wanbo & Lin, Min-Bin & Ren, Rui & Härdle, Wolfgang Karl, 2024. "Cross-exchange crypto risk: A high-frequency dynamic network perspective," International Review of Financial Analysis, Elsevier, vol. 94(C).
- Danial Saef & Yuanrong Wang & Tomaso Aste, 2022. "Regime-based Implied Stochastic Volatility Model for Crypto Option Pricing," Papers 2208.12614, arXiv.org, revised Sep 2022.
- Jia, Yuecheng & Wu, Yangru & Yan, Shu & Liu, Yuzheng, 2023. "A seesaw effect in the cryptocurrency market: Understanding the return cross predictability of cryptocurrencies," Journal of Empirical Finance, Elsevier, vol. 74(C).
- Gradojevic, Nikola & Kukolj, Dragan & Adcock, Robert & Djakovic, Vladimir, 2023. "Forecasting Bitcoin with technical analysis: A not-so-random forest?," International Journal of Forecasting, Elsevier, vol. 39(1), pages 1-17.
- Bouri, Elie & Lau, Chi Keung Marco & Saeed, Tareq & Wang, Shixuan & Zhao, Yuqian, 2021. "On the intraday return curves of Bitcoin: Predictability and trading opportunities," International Review of Financial Analysis, Elsevier, vol. 76(C).
- Scharnowski, Stefan & Shi, Yanghua, 2024. "Intraday herding and attention around the clock," Journal of Behavioral and Experimental Finance, Elsevier, vol. 41(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Gianna Figá-Talamanca & Sergio Focardi & Marco Patacca, 2021. "Common dynamic factors for cryptocurrencies and multiple pair-trading statistical arbitrages," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 44(2), pages 863-882, December.
- Long, Huaigang & Zaremba, Adam & Demir, Ender & Szczygielski, Jan Jakub & Vasenin, Mikhail, 2020. "Seasonality in the Cross-Section of Cryptocurrency Returns," Finance Research Letters, Elsevier, vol. 35(C).
- Pierre J. Venter & Eben Maré, 2020. "GARCH Generated Volatility Indices of Bitcoin and CRIX," JRFM, MDPI, vol. 13(6), pages 1-15, June.
- Guo, Li & Sang, Bo & Tu, Jun & Wang, Yu, 2024. "Cross-cryptocurrency return predictability," Journal of Economic Dynamics and Control, Elsevier, vol. 163(C).
- Yuan, Xianghui & Li, Xiang, 2022. "Delta-hedging demand and intraday momentum: Evidence from China," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 600(C).
- Nie, Chun-Xiao, 2020. "Correlation dynamics in the cryptocurrency market based on dimensionality reduction analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 554(C).
- Borgards, Oliver & Czudaj, Robert L., 2020. "The prevalence of price overreactions in the cryptocurrency market," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 65(C).
- Flori, Andrea, 2019. "News and subjective beliefs: A Bayesian approach to Bitcoin investments," Research in International Business and Finance, Elsevier, vol. 50(C), pages 336-356.
- Rama Cont & Adrien De Larrard, 2011. "Price dynamics in a Markovian limit order market," Papers 1104.4596, arXiv.org.
- Konstantin Häusler & Hongyu Xia, 2022.
"Indices on cryptocurrencies: an evaluation,"
Digital Finance, Springer, vol. 4(2), pages 149-167, September.
- Häusler, Konstantin & Xia, Hongyu, 2021. "Indices on cryptocurrencies: An evaluation," IRTG 1792 Discussion Papers 2021-014, Humboldt University of Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series".
- Rui Fan & Oleksandr Talavera & Vu Tran, 2023.
"Social media and price discovery: The case of cross‐listed firms,"
Journal of Financial Research, Southern Finance Association;Southwestern Finance Association, vol. 46(1), pages 151-167, February.
- Rui Fan & Oleksandr Talavera & Vu Tran, 2020. "Social media and price discovery: the case of cross-listed firms," Discussion Papers 20-05, Department of Economics, University of Birmingham.
- Akbas, Ferhat & Boehmer, Ekkehart & Jiang, Chao & Koch, Paul D., 2022. "Overnight returns, daytime reversals, and future stock returns," Journal of Financial Economics, Elsevier, vol. 145(3), pages 850-875.
- Dinesh Gajurel & Biplob Chowdhury, 2021. "Realized Volatility, Jump and Beta: evidence from Canadian Stock Market," Applied Economics, Taylor & Francis Journals, vol. 53(55), pages 6376-6397, November.
- Borgards, Oliver & Czudaj, Robert L., 2021. "Features of overreactions in the cryptocurrency market," The Quarterly Review of Economics and Finance, Elsevier, vol. 80(C), pages 31-48.
- Renault, Thomas, 2017.
"Intraday online investor sentiment and return patterns in the U.S. stock market,"
Journal of Banking & Finance, Elsevier, vol. 84(C), pages 25-40.
- Thomas Renault, 2017. "Intraday online investor sentiment and return patterns in the U.S. stock market," Post-Print hal-03205113, HAL.
- Akey, Pat & Grégoire, Vincent & Martineau, Charles, 2022. "Price revelation from insider trading: Evidence from hacked earnings news," Journal of Financial Economics, Elsevier, vol. 143(3), pages 1162-1184.
- Gao, Ya & Han, Xing & Li, Youwei & Xiong, Xiong, 2019.
"Overnight momentum, informational shocks, and late informed trading in China,"
International Review of Financial Analysis, Elsevier, vol. 66(C).
- Gao, Ya & Han, Xing & Li, Youwei & Xiong, Xiong, 2019. "Overnight Momentum, Informational Shocks, and Late-Informed Trading in China," MPRA Paper 96784, University Library of Munich, Germany.
- Yao, Dongmin & Sun, Rong & Gao, Qiunan, 2022. "The network structure of the China bond market: Characteristics and explanations from trading factors," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 598(C).
- Yan, Kai & Zhang, Wei & Shen, Dehua, 2020. "Stylized facts of the carbon emission market in China," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 555(C).
- Rebekka Buse & Konstantin Gorgen & Melanie Schienle, 2022. "Predicting Value at Risk for Cryptocurrencies With Generalized Random Forests," Papers 2203.08224, arXiv.org, revised Oct 2024.
More about this item
JEL classification:
- G02 - Financial Economics - - General - - - Behavioral Finance: Underlying Principles
- G11 - Financial Economics - - General Financial Markets - - - Portfolio Choice; Investment Decisions
- G12 - Financial Economics - - General Financial Markets - - - Asset Pricing; Trading Volume; Bond Interest Rates
- G14 - Financial Economics - - General Financial Markets - - - Information and Market Efficiency; Event Studies; Insider Trading
- G15 - Financial Economics - - General Financial Markets - - - International Financial Markets
- G23 - Financial Economics - - Financial Institutions and Services - - - Non-bank Financial Institutions; Financial Instruments; Institutional Investors
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:eurjfi:v:27:y:2021:i:1-2:p:8-30. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/REJF20 .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.