IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2208.12614.html
   My bibliography  Save this paper

Regime-based Implied Stochastic Volatility Model for Crypto Option Pricing

Author

Listed:
  • Danial Saef
  • Yuanrong Wang
  • Tomaso Aste

Abstract

The increasing adoption of Digital Assets (DAs), such as Bitcoin (BTC), rises the need for accurate option pricing models. Yet, existing methodologies fail to cope with the volatile nature of the emerging DAs. Many models have been proposed to address the unorthodox market dynamics and frequent disruptions in the microstructure caused by the non-stationarity, and peculiar statistics, in DA markets. However, they are either prone to the curse of dimensionality, as additional complexity is required to employ traditional theories, or they overfit historical patterns that may never repeat. Instead, we leverage recent advances in market regime (MR) clustering with the Implied Stochastic Volatility Model (ISVM). Time-regime clustering is a temporal clustering method, that clusters the historic evolution of a market into different volatility periods accounting for non-stationarity. ISVM can incorporate investor expectations in each of the sentiment-driven periods by using implied volatility (IV) data. In this paper, we applied this integrated time-regime clustering and ISVM method (termed MR-ISVM) to high-frequency data on BTC options at the popular trading platform Deribit. We demonstrate that MR-ISVM contributes to overcome the burden of complex adaption to jumps in higher order characteristics of option pricing models. This allows us to price the market based on the expectations of its participants in an adaptive fashion.

Suggested Citation

  • Danial Saef & Yuanrong Wang & Tomaso Aste, 2022. "Regime-based Implied Stochastic Volatility Model for Crypto Option Pricing," Papers 2208.12614, arXiv.org, revised Sep 2022.
  • Handle: RePEc:arx:papers:2208.12614
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2208.12614
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yacine Aït-Sahalia & Chenxu Li & Chen Xu Li & Ralph Koijen, 2021. "Implied Stochastic Volatility Models," Review of Economic Studies, Oxford University Press, vol. 34(1), pages 394-450.
    2. Wolfgang Karl Härdle & Campbell R Harvey & Raphael C G Reule, 2020. "Understanding Cryptocurrencies," Journal of Financial Econometrics, Oxford University Press, vol. 18(2), pages 181-208.
    3. Olivier Scaillet & Adrien Treccani & Christopher Trevisan, 2020. "High-Frequency Jump Analysis of the Bitcoin Market," Journal of Financial Econometrics, Oxford University Press, vol. 18(2), pages 209-232.
    4. Barfuss, Wolfram & Massara, Guido Previde & Di Matteo, T. & Aste, Tomaso, 2016. "Parsimonious modeling with information filtering networks," LSE Research Online Documents on Economics 68860, London School of Economics and Political Science, LSE Library.
    5. Marcucci Juri, 2005. "Forecasting Stock Market Volatility with Regime-Switching GARCH Models," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 9(4), pages 1-55, December.
    6. Aït-Sahalia, Yacine & Li, Chenxu & Li, Chen Xu, 2021. "Closed-form implied volatility surfaces for stochastic volatility models with jumps," Journal of Econometrics, Elsevier, vol. 222(1), pages 364-392.
    7. Peter Carr & Liuren Wu, 2003. "What Type of Process Underlies Options? A Simple Robust Test," Journal of Finance, American Finance Association, vol. 58(6), pages 2581-2610, December.
    8. Alla A. Petukhina & Raphael C. G. Reule & Wolfgang Karl Härdle, 2021. "Rise of the machines? Intraday high-frequency trading patterns of cryptocurrencies," The European Journal of Finance, Taylor & Francis Journals, vol. 27(1-2), pages 8-30, January.
    9. Pier Francesco Procacci & Tomaso Aste, 2019. "Forecasting market states," Quantitative Finance, Taylor & Francis Journals, vol. 19(9), pages 1491-1498, September.
    10. Ai Jun Hou & Weining Wang & Cathy Y H Chen & Wolfgang Karl Härdle, 2020. "Pricing Cryptocurrency Options," Journal of Financial Econometrics, Oxford University Press, vol. 18(2), pages 250-279.
    11. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
    12. Stefano Giglio & Bryan Kelly, 2018. "Excess Volatility: Beyond Discount Rates," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 133(1), pages 71-127.
    13. Yacine Aït-Sahalia & Chenxu Li & Chen Xu Li, 2021. "Implied Stochastic Volatility Models [Testing continuous-time models of the spot interest rate]," The Review of Financial Studies, Society for Financial Studies, vol. 34(1), pages 394-450.
    14. Saef, Danial & Nagy, Odett & Sizov, Sergej & Härdle, Wolfgang, 2021. "Understanding jumps in high frequency digital asset markets," IRTG 1792 Discussion Papers 2021-019, Humboldt University of Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series".
    15. Darrell Duffie & Jun Pan & Kenneth Singleton, 2000. "Transform Analysis and Asset Pricing for Affine Jump-Diffusions," Econometrica, Econometric Society, vol. 68(6), pages 1343-1376, November.
    16. Hamilton, James D., 1990. "Analysis of time series subject to changes in regime," Journal of Econometrics, Elsevier, vol. 45(1-2), pages 39-70.
    17. Yuanrong Wang & Tomaso Aste, 2021. "Dynamic Portfolio Optimization with Inverse Covariance Clustering," Papers 2112.15499, arXiv.org, revised Jan 2022.
    18. Malcolm Baker & Jeffrey Wurgler, 2007. "Investor Sentiment in the Stock Market," Journal of Economic Perspectives, American Economic Association, vol. 21(2), pages 129-152, Spring.
    19. Danial Saef & Odett Nagy & Sergej Sizov & Wolfgang Karl Hardle, 2021. "Understanding jumps in high frequency digital asset markets," Papers 2110.09429, arXiv.org.
    20. Pier Francesco Procacci & Tomaso Aste, 2018. "Forecasting market states," Papers 1807.05836, arXiv.org, revised May 2019.
    21. Cai, Jun, 1994. "A Markov Model of Switching-Regime ARCH," Journal of Business & Economic Statistics, American Statistical Association, vol. 12(3), pages 309-316, July.
    22. Wolfgang Karl Hardle & Campbell R. Harvey & Raphael C. G. Reule, 2020. "Editorial: Understanding Cryptocurrencies," Papers 2007.14702, arXiv.org.
    23. Tomaso Aste & T. Di Matteo, 2017. "Sparse Causality Network Retrieval from Short Time Series," Complexity, Hindawi, vol. 2017, pages 1-13, November.
    24. Yukun Liu & Aleh Tsyvinski, 2021. "Risks and Returns of Cryptocurrency," The Review of Financial Studies, Society for Financial Studies, vol. 34(6), pages 2689-2727.
    25. Hamilton, James D, 1989. "A New Approach to the Economic Analysis of Nonstationary Time Series and the Business Cycle," Econometrica, Econometric Society, vol. 57(2), pages 357-384, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yuanrong Wang & Antonio Briola & Tomaso Aste, 2023. "Topological Portfolio Selection and Optimization," Papers 2310.14881, arXiv.org.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Figà-Talamanca, Gianna & Focardi, Sergio & Patacca, Marco, 2021. "Regime switches and commonalities of the cryptocurrencies asset class," The North American Journal of Economics and Finance, Elsevier, vol. 57(C).
    2. King, Daniel & Botha, Ferdi, 2015. "Modelling stock return volatility dynamics in selected African markets," Economic Modelling, Elsevier, vol. 45(C), pages 50-73.
    3. Halkos, George & Tzirivis, Apostolos, 2018. "Effective energy commodities’ risk management: Econometric modeling of price volatility," MPRA Paper 90781, University Library of Munich, Germany.
    4. Ataurima Arellano, Miguel & Rodríguez, Gabriel, 2020. "Empirical modeling of high-income and emerging stock and Forex market return volatility using Markov-switching GARCH models," The North American Journal of Economics and Finance, Elsevier, vol. 52(C).
    5. Gao, Guangyuan & Ho, Kin-Yip & Shi, Yanlin, 2020. "Long memory or regime switching in volatility? Evidence from high-frequency returns on the U.S. stock indices," Pacific-Basin Finance Journal, Elsevier, vol. 61(C).
    6. Zhang, Yue-Jun & Yao, Ting & He, Ling-Yun & Ripple, Ronald, 2019. "Volatility forecasting of crude oil market: Can the regime switching GARCH model beat the single-regime GARCH models?," International Review of Economics & Finance, Elsevier, vol. 59(C), pages 302-317.
    7. Pier Francesco Procacci & Tomaso Aste, 2021. "Portfolio Optimization with Sparse Multivariate Modelling," Papers 2103.15232, arXiv.org.
    8. Eduardo Rossi, 2010. "Univariate GARCH models: a survey (in Russian)," Quantile, Quantile, issue 8, pages 1-67, July.
    9. Konstantin Häusler & Hongyu Xia, 2022. "Indices on cryptocurrencies: an evaluation," Digital Finance, Springer, vol. 4(2), pages 149-167, September.
    10. Abdessamad Ouchen, 2022. "Is the ESG portfolio less turbulent than a market benchmark portfolio?," Risk Management, Palgrave Macmillan, vol. 24(1), pages 1-33, March.
    11. Ardia, David & Bluteau, Keven & Boudt, Kris & Catania, Leopoldo, 2018. "Forecasting risk with Markov-switching GARCH models:A large-scale performance study," International Journal of Forecasting, Elsevier, vol. 34(4), pages 733-747.
    12. Liexin Cheng & Xue Cheng, 2024. "Approximating Smiles: A Time Change Approach," Papers 2401.03776, arXiv.org, revised Apr 2024.
    13. Rossi, Alessandro & Gallo, Giampiero M., 2006. "Volatility estimation via hidden Markov models," Journal of Empirical Finance, Elsevier, vol. 13(2), pages 203-230, March.
    14. Charfeddine, Lanouar, 2016. "Breaks or long range dependence in the energy futures volatility: Out-of-sample forecasting and VaR analysis," Economic Modelling, Elsevier, vol. 53(C), pages 354-374.
    15. Charfeddine, Lanouar, 2014. "True or spurious long memory in volatility: Further evidence on the energy futures markets," Energy Policy, Elsevier, vol. 71(C), pages 76-93.
    16. Levy, Moshe & Kaplanski, Guy, 2015. "Portfolio selection in a two-regime world," European Journal of Operational Research, Elsevier, vol. 242(2), pages 514-524.
    17. Franses,Philip Hans & Dijk,Dick van, 2000. "Non-Linear Time Series Models in Empirical Finance," Cambridge Books, Cambridge University Press, number 9780521779654.
    18. Su, EnDer, 2017. "Stock index hedging using a trend and volatility regime-switching model involving hedging cost," International Review of Economics & Finance, Elsevier, vol. 47(C), pages 233-254.
    19. Shi, Yanlin & Feng, Lingbing, 2016. "A discussion on the innovation distribution of the Markov regime-switching GARCH model," Economic Modelling, Elsevier, vol. 53(C), pages 278-288.
    20. Boyi Li & Weixuan Xia, 2024. "Crypto Inverse-Power Options and Fractional Stochastic Volatility," Papers 2403.16006, arXiv.org.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2208.12614. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.