IDEAS home Printed from https://ideas.repec.org/a/spr/sjecst/v159y2023i1d10.1186_s41937-023-00115-w.html
   My bibliography  Save this article

A monthly leading indicator of Swiss GDP growth based on Okun’s law

Author

Listed:
  • Peter Kugler

    (University of Basel)

  • George Sheldon

    (University of Basel)

Abstract

We propose a unique method of nowcasting and forecasting GDP growth based on a forward-looking measure of unemployment (FLUR) and Okun’s law that offers a number of advantages over current leading indicators of the Swiss business cycle. The following investigation, covering the period from 1991/1 to 2021/4, demonstrates that our approach outperforms an AR(1) model of GDP growth equally well as the popular Business Cycle Index of the Swiss National Bank and the KOF Barometer with respect to year-to-year growth, but less so in regard to quarter-to-quarter changes. Our findings suggest that our approach offers a reliable and useful indicator to policymakers seeking easily compiled information on the current and future course of the Swiss economy at monthly time intervals.

Suggested Citation

  • Peter Kugler & George Sheldon, 2023. "A monthly leading indicator of Swiss GDP growth based on Okun’s law," Swiss Journal of Economics and Statistics, Springer;Swiss Society of Economics and Statistics, vol. 159(1), pages 1-14, December.
  • Handle: RePEc:spr:sjecst:v:159:y:2023:i:1:d:10.1186_s41937-023-00115-w
    DOI: 10.1186/s41937-023-00115-w
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1186/s41937-023-00115-w
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1186/s41937-023-00115-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. George Sheldon, 2020. "Unemployment in Switzerland in the wake of the Covid-19 pandemic: an intertemporal perspective," Swiss Journal of Economics and Statistics, Springer;Swiss Society of Economics and Statistics, vol. 156(1), pages 1-9, December.
    2. Alain Galli, 2018. "Which Indicators Matter? Analyzing the Swiss Business Cycle Using a Large-Scale Mixed-Frequency Dynamic Factor Model," Journal of Business Cycle Research, Springer;Centre for International Research on Economic Tendency Surveys (CIRET), vol. 14(2), pages 179-218, November.
    3. Klaus Abberger & Michael Graff & Boriss Siliverstovs & Jan-Egbert Sturm, 2014. "The KOF Economic Barometer, Version 2014," KOF Working papers 14-353, KOF Swiss Economic Institute, ETH Zurich.
    4. Sylvia Kaufmann, 2020. "COVID-19 outbreak and beyond: the information content of registered short-time workers for GDP now- and forecasting," Swiss Journal of Economics and Statistics, Springer;Swiss Society of Economics and Statistics, vol. 156(1), pages 1-12, December.
    5. Jushan Bai & Pierre Perron, 2003. "Computation and analysis of multiple structural change models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 18(1), pages 1-22.
    6. Sider, Hal, 1985. "Unemployment Duration and Incidence: 1968-82," American Economic Review, American Economic Association, vol. 75(3), pages 461-472, June.
    7. Diebold, Francis X & Mariano, Roberto S, 2002. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 134-144, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Felder, Rahel & Sheldon, George, 2023. "Ein System zur laufenden Messung der Knappheitsverhältnisse auf beruflichen Arbeitsmärkten in der Schweiz," Working papers 2023/10, Faculty of Business and Economics - University of Basel.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Marc Burri & Daniel Kaufmann, 2020. "A daily fever curve for the Swiss economy," Swiss Journal of Economics and Statistics, Springer;Swiss Society of Economics and Statistics, vol. 156(1), pages 1-11, December.
    2. Andrea Bucci, 2020. "Realized Volatility Forecasting with Neural Networks," Journal of Financial Econometrics, Oxford University Press, vol. 18(3), pages 502-531.
    3. Cathy Yi-Hsuan Chen & Thomas C. Chiang, 2017. "Surprises, sentiments, and the expectations hypothesis of the term structure of interest rates," Review of Quantitative Finance and Accounting, Springer, vol. 49(1), pages 1-28, July.
    4. Hännikäinen Jari, 2017. "Selection of an Estimation Window in the Presence of Data Revisions and Recent Structural Breaks," Journal of Econometric Methods, De Gruyter, vol. 6(1), pages 1-22, January.
    5. Gupta, Rangan & Ji, Qiang & Pierdzioch, Christian & Plakandaras, Vasilios, 2023. "Forecasting the conditional distribution of realized volatility of oil price returns: The role of skewness over 1859 to 2023," Finance Research Letters, Elsevier, vol. 58(PC).
    6. Salisu, Afees A. & Raheem, Ibrahim D. & Vo, Xuan Vinh, 2021. "Assessing the safe haven property of the gold market during COVID-19 pandemic," International Review of Financial Analysis, Elsevier, vol. 74(C).
    7. Pesaran, M.H. & Pick, A., 2008. "Forecasting Random Walks Under Drift Instability," Cambridge Working Papers in Economics 0814, Faculty of Economics, University of Cambridge.
    8. Bekiros, Stelios & Marcellino, Massimiliano, 2013. "The multiscale causal dynamics of foreign exchange markets," Journal of International Money and Finance, Elsevier, vol. 33(C), pages 282-305.
    9. Kaufmann, Daniel & Scheufele, Rolf, 2017. "Business tendency surveys and macroeconomic fluctuations," International Journal of Forecasting, Elsevier, vol. 33(4), pages 878-893.
    10. Cai, Lili & Swanson, Norman R., 2011. "In- and out-of-sample specification analysis of spot rate models: Further evidence for the period 1982-2008," Journal of Empirical Finance, Elsevier, vol. 18(4), pages 743-764, September.
    11. Donya Rahmani & Damien Fay, 2022. "A state‐dependent linear recurrent formula with application to time series with structural breaks," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 41(1), pages 43-63, January.
    12. Huang, Tao & Fildes, Robert & Soopramanien, Didier, 2019. "Forecasting retailer product sales in the presence of structural change," European Journal of Operational Research, Elsevier, vol. 279(2), pages 459-470.
    13. Tae‐Hwy Lee & Shahnaz Parsaeian & Aman Ullah, 2022. "Forecasting Under Structural Breaks Using Improved Weighted Estimation," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 84(6), pages 1485-1501, December.
    14. Bonaccolto, G. & Caporin, M. & Gupta, R., 2018. "The dynamic impact of uncertainty in causing and forecasting the distribution of oil returns and risk," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 507(C), pages 446-469.
    15. Bonato, Matteo & Gkillas, Konstantinos & Gupta, Rangan & Pierdzioch, Christian, 2021. "A note on investor happiness and the predictability of realized volatility of gold," Finance Research Letters, Elsevier, vol. 39(C).
    16. Gong, Xu & Lin, Boqiang, 2018. "Structural changes and out-of-sample prediction of realized range-based variance in the stock market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 494(C), pages 27-39.
    17. Günes Kamber & James Morley & Benjamin Wong, 2018. "Intuitive and Reliable Estimates of the Output Gap from a Beveridge-Nelson Filter," The Review of Economics and Statistics, MIT Press, vol. 100(3), pages 550-566, July.
    18. Clark, Todd E. & McCracken, Michael W., 2006. "The Predictive Content of the Output Gap for Inflation: Resolving In-Sample and Out-of-Sample Evidence," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 38(5), pages 1127-1148, August.
    19. Salisu, Afees A. & Gupta, Rangan & Karmakar, Sayar & Das, Sonali, 2022. "Forecasting output growth of advanced economies over eight centuries: The role of gold market volatility as a proxy of global uncertainty," Resources Policy, Elsevier, vol. 75(C).
    20. Balcilar, Mehmet & Gupta, Rangan & Segnon, Mawuli, 2016. "The role of economic policy uncertainty in predicting U.S. recessions: A mixed-frequency Markov-switching vector autoregressive approach," Economics - The Open-Access, Open-Assessment E-Journal (2007-2020), Kiel Institute for the World Economy (IfW Kiel), vol. 10, pages 1-20.

    More about this item

    Keywords

    Leading indicator; Higher-frequency data; GDP growth; Unemployment; Okun’s law;
    All these keywords.

    JEL classification:

    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • E37 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Forecasting and Simulation: Models and Applications
    • J64 - Labor and Demographic Economics - - Mobility, Unemployment, Vacancies, and Immigrant Workers - - - Unemployment: Models, Duration, Incidence, and Job Search

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:sjecst:v:159:y:2023:i:1:d:10.1186_s41937-023-00115-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.