IDEAS home Printed from https://ideas.repec.org/a/spr/scient/v90y2012i2d10.1007_s11192-011-0532-5.html
   My bibliography  Save this article

The private and social value of patents in discrete and cumulative innovation

Author

Listed:
  • Justus Baron

    () (Cerna Mines ParisTech)

  • Henry Delcamp

    () (Cerna Mines ParisTech)

Abstract

This article analyzes the relationship between private and social value of patents, comparing discrete and cumulative innovation. Indicators of the social value of patents are known to be less correlated with measures of private value in technological fields where innovation is more cumulative. We test whether this is because the link between private and social value is weaker, or because the indicators are less informative of the underlying concepts of value. Furthermore we analyze whether these differences between technological fields are really due to cumulativeness. We observe cumulative innovation by making use of databases of patents declared essential for technological standards. Using factor analysis and a set of patent quality indicators, we test the relevance of social value for predicting the private value of a patent measured by renewal and litigation. Whereas we establish a robust and significant link for discrete technologies; neither common factors nor any indicator of social value allows predicting the private value of essential, very cumulative patents. Nevertheless, this result cannot be generalized to whole technological classes identified as “complex” by the literature.

Suggested Citation

  • Justus Baron & Henry Delcamp, 2012. "The private and social value of patents in discrete and cumulative innovation," Scientometrics, Springer;Akadémiai Kiadó, vol. 90(2), pages 581-606, February.
  • Handle: RePEc:spr:scient:v:90:y:2012:i:2:d:10.1007_s11192-011-0532-5
    DOI: 10.1007/s11192-011-0532-5
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11192-011-0532-5
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Nicolas van Zeebroeck & Bruno van Pottelsberghe de la Potterie, 2011. "The vulnerability of patent value determinants," Economics of Innovation and New Technology, Taylor & Francis Journals, vol. 20(3), pages 283-308.
    2. David J. Salant, 2009. "Formulas for Fair, Reasonable and Non-Discriminatory Royalty Determination," International Journal of IT Standards and Standardization Research (IJITSR), IGI Global, vol. 7(1), pages 66-75, January.
    3. Manuel Trajtenberg, 1990. "A Penny for Your Quotes: Patent Citations and the Value of Innovations," RAND Journal of Economics, The RAND Corporation, vol. 21(1), pages 172-187, Spring.
    4. Bronwyn H. Hall & Adam Jaffe & Manuel Trajtenberg, 2005. "Market Value and Patent Citations," RAND Journal of Economics, The RAND Corporation, vol. 36(1), pages 16-38, Spring.
    5. Georg Graevenitz & Stefan Wagner & Dietmar Harhoff, 2013. "Incidence and Growth of Patent Thickets: The Impact of Technological Opportunities and Complexity," Journal of Industrial Economics, Wiley Blackwell, vol. 61(3), pages 521-563, September.
    6. Hall, B. & Jaffe, A. & Trajtenberg, M., 2001. "The NBER Patent Citations Data File: Lessons, Insights and Methodological Tools," Papers 2001-29, Tel Aviv.
    7. Marc Rysman & Timothy Simcoe, 2008. "Patents and the Performance of Voluntary Standard-Setting Organizations," Management Science, INFORMS, vol. 54(11), pages 1920-1934, November.
    8. James Bessen, 2004. "Patent Thickets: Strategic Patenting of Complex Technologies," Working Papers 0401, Research on Innovation.
    9. repec:fth:harver:1473 is not listed on IDEAS
    10. Zvi Griliches, 1998. "Patent Statistics as Economic Indicators: A Survey," NBER Chapters, in: R&D and Productivity: The Econometric Evidence, pages 287-343, National Bureau of Economic Research, Inc.
    11. Lanjouw, Jean O & Pakes, Ariel & Putnam, Jonathan, 1998. "How to Count Patents and Value Intellectual Property: The Uses of Patent Renewal and Application Data," Journal of Industrial Economics, Wiley Blackwell, vol. 46(4), pages 405-432, December.
    12. James Bessen & Eric Maskin, 2009. "Sequential innovation, patents, and imitation," RAND Journal of Economics, RAND Corporation, vol. 40(4), pages 611-635, December.
    13. Hall, Bronwyn H & Ziedonis, Rosemarie Ham, 2001. "The Patent Paradox Revisited: An Empirical Study of Patenting in the U.S. Semiconductor Industry, 1979-1995," RAND Journal of Economics, The RAND Corporation, vol. 32(1), pages 101-128, Spring.
    14. Jean O. Lanjouw & Mark Schankerman, 1999. "The Quality of Ideas: Measuring Innovation with Multiple Indicators," NBER Working Papers 7345, National Bureau of Economic Research, Inc.
    15. Manuel Trajtenberg & Rebecca Henderson & Adam Jaffe, 1997. "University Versus Corporate Patents: A Window On The Basicness Of Invention," Economics of Innovation and New Technology, Taylor & Francis Journals, vol. 5(1), pages 19-50.
    16. Dietmar Harhoff & Francis Narin & F. M. Scherer & Katrin Vopel, 1999. "Citation Frequency And The Value Of Patented Inventions," The Review of Economics and Statistics, MIT Press, vol. 81(3), pages 511-515, August.
    17. Liu, Kun & Arthurs, Jonathan & Cullen, John & Alexander, Roger, 2008. "Internal sequential innovations: How does interrelatedness affect patent renewal?," Research Policy, Elsevier, vol. 37(5), pages 946-953, June.
    18. von Graevenitz, Georg & Wagner, Stefan & Harhoff, Dietmar, 2011. "How to measure patent thickets--A novel approach," Economics Letters, Elsevier, vol. 111(1), pages 6-9, April.
    19. Berger, Florian & Blind, Knut & Thumm, Nikolaus, 2012. "Filing behaviour regarding essential patents in industry standards," Research Policy, Elsevier, vol. 41(1), pages 216-225.
    20. Richard C. Levin & Alvin K. Klevorick & Richard R. Nelson & Sidney G. Winter, 1987. "Appropriating the Returns from Industrial Research and Development," Brookings Papers on Economic Activity, Economic Studies Program, The Brookings Institution, vol. 18(3, Specia), pages 783-832.
    21. Jean O. Lanjouw & Mark Schankerman, 2004. "Patent Quality and Research Productivity: Measuring Innovation with Multiple Indicators," Economic Journal, Royal Economic Society, vol. 114(495), pages 441-465, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zafer Sonmez, 2018. "Interregional inventor collaboration and the commercial value of patented inventions: evidence from the US biotechnology industry," The Annals of Regional Science, Springer;Western Regional Science Association, vol. 61(2), pages 399-438, September.
    2. Chandra, Praveena & Dong, Andy, 2018. "The relation between knowledge accumulation and technical value in interdisciplinary technologies," Technological Forecasting and Social Change, Elsevier, vol. 128(C), pages 235-244.
    3. Ribeiro, Barbara & Shapira, Philip, 2020. "Private and public values of innovation: A patent analysis of synthetic biology," Research Policy, Elsevier, vol. 49(1).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Antoine Dechezleprêtre & Yann Ménière & Myra Mohnen, 2017. "International patent families: from application strategies to statistical indicators," Scientometrics, Springer;Akadémiai Kiadó, vol. 111(2), pages 793-828, May.
    2. Giuri, Paola & Mariani, Myriam, 2007. "Inventors and invention processes in Europe: Results from the PatVal-EU survey," Research Policy, Elsevier, vol. 36(8), pages 1105-1106, October.
    3. Nagaoka, Sadao & Motohashi, Kazuyuki & Goto, Akira, 2010. "Patent Statistics as an Innovation Indicator," Handbook of the Economics of Innovation, in: Bronwyn H. Hall & Nathan Rosenberg (ed.), Handbook of the Economics of Innovation, edition 1, volume 2, chapter 0, pages 1083-1127, Elsevier.
    4. Feng Zhang & Guohua Jiang, 2019. "Combination of Complementary Technological Knowledge to Generate “Hard to Imitate” Technologies," Journal of Information & Knowledge Management (JIKM), World Scientific Publishing Co. Pte. Ltd., vol. 18(02), pages 1-24, June.
    5. Adam B. Jaffe & Gaétan de Rassenfosse, 2017. "Patent citation data in social science research: Overview and best practices," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 68(6), pages 1360-1374, June.
    6. Sarah Kaplan & Keyvan Vakili, 2015. "The double-edged sword of recombination in breakthrough innovation," Strategic Management Journal, Wiley Blackwell, vol. 36(10), pages 1435-1457, October.
    7. Burak Dindaroğlu, 2018. "Determinants of patent quality in U.S. manufacturing: technological diversity, appropriability, and firm size," The Journal of Technology Transfer, Springer, vol. 43(4), pages 1083-1106, August.
    8. Keijl, S. & Gilsing, V.A. & Knoben, J. & Duysters, G., 2016. "The two faces of inventions: The relationship between recombination and impact in pharmaceutical biotechnology," Research Policy, Elsevier, vol. 45(5), pages 1061-1074.
    9. Amore, Mario Daniele & Schneider, Cédric & Žaldokas, Alminas, 2013. "Credit supply and corporate innovation," Journal of Financial Economics, Elsevier, vol. 109(3), pages 835-855.
    10. Hirshleifer, David & Hsu, Po-Hsuan & Li, Dongmei, 2013. "Innovative efficiency and stock returns," Journal of Financial Economics, Elsevier, vol. 107(3), pages 632-654.
    11. Wagner, Stefan & Wakeman, Simon, 2016. "What do patent-based measures tell us about product commercialization? Evidence from the pharmaceutical industry," Research Policy, Elsevier, vol. 45(5), pages 1091-1102.
    12. Guan-Can Yang & Gang Li & Chun-Ya Li & Yun-Hua Zhao & Jing Zhang & Tong Liu & Dar-Zen Chen & Mu-Hsuan Huang, 2015. "Using the comprehensive patent citation network (CPC) to evaluate patent value," Scientometrics, Springer;Akadémiai Kiadó, vol. 105(3), pages 1319-1346, December.
    13. Emanuele Bacchiocchi & Fabio Montobbio, 2010. "International Knowledge Diffusion and Home‐bias Effect: Do USPTO and EPO Patent Citations Tell the Same Story?," Scandinavian Journal of Economics, Wiley Blackwell, vol. 112(3), pages 441-470, September.
    14. Yi Deng, 2005. "The Value of Knowledge Flows: Evidence from Patent Citations Data," Computing in Economics and Finance 2005 374, Society for Computational Economics.
    15. RAITERI Emilio, 2015. "A time to nourish? Evaluating the impact of innovative public procurement on technological generality through patent data," Cahiers du GREThA (2007-2019) 2015-05, Groupe de Recherche en Economie Théorique et Appliquée (GREThA).
    16. Eun Han & So Sohn, 2015. "Patent valuation based on text mining and survival analysis," The Journal of Technology Transfer, Springer, vol. 40(5), pages 821-839, October.
    17. Raiteri, Emilio, 2018. "A time to nourish? Evaluating the impact of public procurement on technological generality through patent data," Research Policy, Elsevier, vol. 47(5), pages 936-952.
    18. Martin Kalthaus, 2020. "Knowledge recombination along the technology life cycle," Journal of Evolutionary Economics, Springer, vol. 30(3), pages 643-704, July.
    19. Lee, Yun-Chi, 2020. "Does staying private longer affect innovation of VC-backed IPOs and outcomes of VC investments?," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 66(C).
    20. Antonio Messeni Petruzzelli & Daniele Rotolo & Vito Albino, 2014. "Determinants of Patent Citations in Biotechnology: An Analysis of Patent Influence Across the Industrial and Organizational Boundaries," SPRU Working Paper Series 2014-05, SPRU - Science Policy Research Unit, University of Sussex Business School.

    More about this item

    Keywords

    Patent value; Patent quality; Indicators; Cumulative innovation; Complex technologies; Standardization;
    All these keywords.

    JEL classification:

    • O31 - Economic Development, Innovation, Technological Change, and Growth - - Innovation; Research and Development; Technological Change; Intellectual Property Rights - - - Innovation and Invention: Processes and Incentives
    • O34 - Economic Development, Innovation, Technological Change, and Growth - - Innovation; Research and Development; Technological Change; Intellectual Property Rights - - - Intellectual Property and Intellectual Capital
    • D23 - Microeconomics - - Production and Organizations - - - Organizational Behavior; Transaction Costs; Property Rights

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:scient:v:90:y:2012:i:2:d:10.1007_s11192-011-0532-5. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Sonal Shukla) or (Springer Nature Abstracting and Indexing). General contact details of provider: http://www.springer.com .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.