IDEAS home Printed from https://ideas.repec.org/a/spr/qualqt/v58y2024i2d10.1007_s11135-023-01681-0.html
   My bibliography  Save this article

Occam’s razor, machine learning and stochastic modeling of complex systems: the case of the Italian energy market

Author

Listed:
  • Carlo Mari

    (University of Chieti-Pescara)

  • Emiliano Mari

    (Sydus)

Abstract

In the spirit of Occam’s razor, we propose a parsimoniuos regime-switching model for describing the complex dynamics of electricity and natural gas prices observed in real markets. The model was built using a machine learning-based methodology, namely a cluster analysis to investigate the properties of the stable dynamics and a deep neural network appropriately trained on market data to drive transitions between different regimes. The main purposes of this study are twofold: (1) to build the simplest model capable of incorporating the main stylized facts of electricity and natural gas prices, including dynamic correlation; (2) to define an appropriate calibration procedure on market data. We applied this methodology to the Italian energy market. The results obtained show remarkable agreement with the empirical data, satisfactorily reproducing the first four moments of the empirical distributions of log-returns.

Suggested Citation

  • Carlo Mari & Emiliano Mari, 2024. "Occam’s razor, machine learning and stochastic modeling of complex systems: the case of the Italian energy market," Quality & Quantity: International Journal of Methodology, Springer, vol. 58(2), pages 1093-1111, April.
  • Handle: RePEc:spr:qualqt:v:58:y:2024:i:2:d:10.1007_s11135-023-01681-0
    DOI: 10.1007/s11135-023-01681-0
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11135-023-01681-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11135-023-01681-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Carlo Mari & Emiliano Mari, 2021. "Gaussian clustering and jump-diffusion models of electricity prices: a deep learning analysis," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 44(2), pages 1039-1062, December.
    2. McFadden, Daniel, 1989. "A Method of Simulated Moments for Estimation of Discrete Response Models without Numerical Integration," Econometrica, Econometric Society, vol. 57(5), pages 995-1026, September.
    3. Matthew Wang & Yi-Hong Lin & Ilya Mikhelson, 2020. "Regime-Switching Factor Investing with Hidden Markov Models," JRFM, MDPI, vol. 13(12), pages 1-15, December.
    4. Apostolos Serletis & Libo Xu, 2019. "Markov Switching Oil Price Uncertainty," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 81(5), pages 1045-1064, October.
    5. Jinan Liu & Apostolos Serletis, 2023. "Volatility and dependence in energy markets," Journal of Economics and Finance, Springer;Academy of Economics and Finance, vol. 47(1), pages 15-37, March.
    6. Wei Bao & Jun Yue & Yulei Rao, 2017. "A deep learning framework for financial time series using stacked autoencoders and long-short term memory," PLOS ONE, Public Library of Science, vol. 12(7), pages 1-24, July.
    7. Helyette Geman & A. Roncoroni, 2006. "Understanding the Fine Structure of Electricity Prices," Post-Print halshs-00144198, HAL.
    8. Naeem, Muhammad Abubakr & Peng, Zhe & Suleman, Mouhammed Tahir & Nepal, Rabindra & Shahzad, Syed Jawad Hussain, 2020. "Time and frequency connectedness among oil shocks, electricity and clean energy markets," Energy Economics, Elsevier, vol. 91(C).
    9. Mason, Charles F. & A. Wilmot, Neil, 2014. "Jump processes in natural gas markets," Energy Economics, Elsevier, vol. 46(S1), pages 69-79.
    10. Elliott Robert J. & Siu Tak Kuen & Lau John W., 2018. "A hidden Markov regime-switching smooth transition model," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 22(4), pages 1-21, September.
    11. Duffie, Darrell & Singleton, Kenneth J, 1993. "Simulated Moments Estimation of Markov Models of Asset Prices," Econometrica, Econometric Society, vol. 61(4), pages 929-952, July.
    12. Alvaro Cartea & Marcelo Figueroa, 2005. "Pricing in Electricity Markets: A Mean Reverting Jump Diffusion Model with Seasonality," Applied Mathematical Finance, Taylor & Francis Journals, vol. 12(4), pages 313-335.
    13. Hamilton, James D, 1989. "A New Approach to the Economic Analysis of Nonstationary Time Series and the Business Cycle," Econometrica, Econometric Society, vol. 57(2), pages 357-384, March.
    14. Bucher, Axel & Segers, Johan, 2018. "Inference for heavy tailed stationary time series based on sliding blocks," LIDAM Reprints ISBA 2018007, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    15. Ruble, Isabella & Powell, John, 2021. "The Brent-WTI spread revisited: A novel approach," The Journal of Economic Asymmetries, Elsevier, vol. 23(C).
    16. Huisman, Ronald & Mahieu, Ronald, 2003. "Regime jumps in electricity prices," Energy Economics, Elsevier, vol. 25(5), pages 425-434, September.
    17. Křehlík, Tomáš & Baruník, Jozef, 2017. "Cyclical properties of supply-side and demand-side shocks in oil-based commodity markets," Energy Economics, Elsevier, vol. 65(C), pages 208-218.
    18. Scarcioffolo, Alexandre R. & Etienne, Xiaoli L., 2021. "Regime-switching energy price volatility: The role of economic policy uncertainty," International Review of Economics & Finance, Elsevier, vol. 76(C), pages 336-356.
    19. Mari, Carlo, 2006. "Regime-switching characterization of electricity prices dynamics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 371(2), pages 552-564.
    20. Borovkova, Svetlana & Schmeck, Maren Diane, 2017. "Electricity price modeling with stochastic time change," Energy Economics, Elsevier, vol. 63(C), pages 51-65.
    21. repec:dau:papers:123456789/1433 is not listed on IDEAS
    22. Eichler, M. & Türk, D., 2013. "Fitting semiparametric Markov regime-switching models to electricity spot prices," Energy Economics, Elsevier, vol. 36(C), pages 614-624.
    23. Hélyette Geman & Andrea Roncoroni, 2006. "Understanding the Fine Structure of Electricity Prices," The Journal of Business, University of Chicago Press, vol. 79(3), pages 1225-1262, May.
    24. Paraschiv, Florentina & Fleten, Stein-Erik & Schürle, Michael, 2015. "A spot-forward model for electricity prices with regime shifts," Energy Economics, Elsevier, vol. 47(C), pages 142-153.
    25. Daniel Leonhardt & Antony Ware & Rudi Zagst, 2017. "A Cointegrated Regime-Switching Model Approach with Jumps Applied to Natural Gas Futures Prices," Risks, MDPI, vol. 5(3), pages 1-19, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Carlo Mari & Emiliano Mari, 2021. "Gaussian clustering and jump-diffusion models of electricity prices: a deep learning analysis," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 44(2), pages 1039-1062, December.
    2. Carlo Mari & Cristiano Baldassari, 2021. "Ensemble Methods for Jump-Diffusion Models of Power Prices," Energies, MDPI, vol. 14(8), pages 1-17, April.
    3. Umut Ugurlu & Ilkay Oksuz & Oktay Tas, 2018. "Electricity Price Forecasting Using Recurrent Neural Networks," Energies, MDPI, vol. 11(5), pages 1-23, May.
    4. Deschatre, Thomas & Féron, Olivier & Gruet, Pierre, 2021. "A survey of electricity spot and futures price models for risk management applications," Energy Economics, Elsevier, vol. 102(C).
    5. Mari, Carlo & Cananà, Lucianna, 2012. "Markov switching of the electricity supply curve and power prices dynamics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(4), pages 1481-1488.
    6. Islyaev, Suren & Date, Paresh, 2015. "Electricity futures price models: Calibration and forecasting," European Journal of Operational Research, Elsevier, vol. 247(1), pages 144-154.
    7. Weron, Rafał, 2014. "Electricity price forecasting: A review of the state-of-the-art with a look into the future," International Journal of Forecasting, Elsevier, vol. 30(4), pages 1030-1081.
    8. Borovkova, Svetlana & Schmeck, Maren Diane, 2017. "Electricity price modeling with stochastic time change," Energy Economics, Elsevier, vol. 63(C), pages 51-65.
    9. Carlo Lucheroni, 2012. "A hybrid SETARX model for spikes in tight electricity markets," Operations Research and Decisions, Wroclaw University of Science and Technology, Faculty of Management, vol. 22(1), pages 13-49.
    10. Gaurav Kapoor & Nuttanan Wichitaksorn & Wenjun Zhang, 2023. "Analyzing and forecasting electricity price using regime‐switching models: The case of New Zealand market," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 42(8), pages 2011-2026, December.
    11. Alain Monfort & Olivier Féron, 2012. "Joint econometric modeling of spot electricity prices, forwards and options," Review of Derivatives Research, Springer, vol. 15(3), pages 217-256, October.
    12. Michel Culot & Valérie Goffin & Steve Lawford & Sébastien de Meten & Yves Smeers, 2013. "Practical stochastic modelling of electricity prices," Post-Print hal-01021603, HAL.
    13. Timothy Christensen & Stan Hurn & Kenneth Lindsay, 2009. "It Never Rains but it Pours: Modeling the Persistence of Spikes in Electricity Prices," The Energy Journal, , vol. 30(1), pages 25-48, January.
    14. Jan Seifert & Marliese Uhrig-Homburg, 2007. "Modelling jumps in electricity prices: theory and empirical evidence," Review of Derivatives Research, Springer, vol. 10(1), pages 59-85, January.
    15. Koch, Torben & Vargiolu, Tiziano, 2019. "Optimal Installation of Solar Panels with Price Impact: a Solvable Singular Stochastic Control Problem," Center for Mathematical Economics Working Papers 627, Center for Mathematical Economics, Bielefeld University.
    16. Fanone, Enzo & Gamba, Andrea & Prokopczuk, Marcel, 2013. "The case of negative day-ahead electricity prices," Energy Economics, Elsevier, vol. 35(C), pages 22-34.
    17. Radu Porumb & Petru Postolache & George Serițan & Ramona Vatu & Oana Ceaki, 2013. "Load profiles analysis for electricity market," Computational Methods in Social Sciences (CMSS), "Nicolae Titulescu" University of Bucharest, Faculty of Economic Sciences, vol. 1(2), pages 30-38, December.
    18. Janczura, Joanna & Trück, Stefan & Weron, Rafał & Wolff, Rodney C., 2013. "Identifying spikes and seasonal components in electricity spot price data: A guide to robust modeling," Energy Economics, Elsevier, vol. 38(C), pages 96-110.
    19. Adam Clements & Joanne Fuller & Stan Hurn, 2013. "Semi-parametric Forecasting of Spikes in Electricity Prices," The Economic Record, The Economic Society of Australia, vol. 89(287), pages 508-521, December.
    20. Joanna Janczura, 2014. "Pricing electricity derivatives within a Markov regime-switching model: a risk premium approach," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 79(1), pages 1-30, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:qualqt:v:58:y:2024:i:2:d:10.1007_s11135-023-01681-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.