IDEAS home Printed from https://ideas.repec.org/a/spr/orspec/v43y2021i2d10.1007_s00291-021-00621-4.html
   My bibliography  Save this article

Airport capacity extension, fleet investment, and optimal aircraft scheduling in a multilevel market model: quantifying the costs of imperfect markets

Author

Listed:
  • Stefano Coniglio

    (University of Southampton)

  • Mathias Sirvent

    (Friedrich-Alexander-University Erlangen-Nuremberg, Discrete Optimization)

  • Martin Weibelzahl

    (University of Bayreuth & Fraunhofer FIT)

Abstract

We present a market model of a liberalized aviation market with independent decision makers. The model consists of a hierarchical, trilevel optimization problem where perfectly competitive budget-constrained airports decide (in the first level) on optimal runway capacity extensions and airport charges by anticipating long-term fleet investment and medium-term aircraft scheduling decisions taken by a set of imperfectly competitive airlines (in the second level). Both airports and airlines anticipate the short-term outcome of a perfectly competitive ticket market (in the third level). We compare our trilevel model to an integrated single-level (benchmark) model in which investments, scheduling, and market-clearing decisions are simultaneously taken by a welfare-maximizing social planner. Using a simple six airports example from the literature, we illustrate the inefficiency of long-run investments in both runway capacity and aircraft fleet which may be observed in aviation markets with imperfectly competitive airlines.

Suggested Citation

  • Stefano Coniglio & Mathias Sirvent & Martin Weibelzahl, 2021. "Airport capacity extension, fleet investment, and optimal aircraft scheduling in a multilevel market model: quantifying the costs of imperfect markets," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 43(2), pages 367-408, June.
  • Handle: RePEc:spr:orspec:v:43:y:2021:i:2:d:10.1007_s00291-021-00621-4
    DOI: 10.1007/s00291-021-00621-4
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00291-021-00621-4
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00291-021-00621-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Brian Rexing & Cynthia Barnhart & Tim Kniker & Ahmad Jarrah & Nirup Krishnamurthy, 2000. "Airline Fleet Assignment with Time Windows," Transportation Science, INFORMS, vol. 34(1), pages 1-20, February.
    2. Timothy L. Jacobs & Laurie A. Garrow & Manoj Lohatepanont & Frank S. Koppelman & Gregory M. Coldren & Hadi Purnomo, 2012. "Airline Planning and Schedule Development," International Series in Operations Research & Management Science, in: Cynthia Barnhart & Barry Smith (ed.), Quantitative Problem Solving Methods in the Airline Industry, edition 127, chapter 0, pages 35-99, Springer.
    3. Burghouwt, Guillaume & de Wit, Jaap G., 2015. "In the wake of liberalisation: long-term developments in the EU air transport market," Transport Policy, Elsevier, vol. 43(C), pages 104-113.
    4. Hanif Sherali & Ki-Hwan Bae & Mohamed Haouari, 2013. "A benders decomposition approach for an integrated airline schedule design and fleet assignment problem with flight retiming, schedule balance, and demand recapture," Annals of Operations Research, Springer, vol. 210(1), pages 213-244, November.
    5. Gregory Dobson & Phillip J. Lederer, 1993. "Airline Scheduling and Routing in a Hub-and-Spoke System," Transportation Science, INFORMS, vol. 27(3), pages 281-297, August.
    6. Tobias Harks & Max Klimm, 2012. "On the Existence of Pure Nash Equilibria in Weighted Congestion Games," Mathematics of Operations Research, INFORMS, vol. 37(3), pages 419-436, August.
    7. Silva, Hugo E. & Verhoef, Erik T. & van den Berg, Vincent A.C., 2014. "Airline route structure competition and network policy," Transportation Research Part B: Methodological, Elsevier, vol. 67(C), pages 320-343.
    8. Michael Mazzeo, 2003. "Competition and Service Quality in the U.S. Airline Industry," Review of Industrial Organization, Springer;The Industrial Organization Society, vol. 22(4), pages 275-296, June.
    9. Kidokoro, Yukihiro & Lin, Ming Hsin & Zhang, Anming, 2016. "A general-equilibrium analysis of airport pricing, capacity, and regulation," Journal of Urban Economics, Elsevier, vol. 96(C), pages 142-155.
    10. List, George F. & Wood, Bryan & Nozick, Linda K. & Turnquist, Mark A. & Jones, Dean A. & Kjeldgaard, Edwin A. & Lawton, Craig R., 2003. "Robust optimization for fleet planning under uncertainty," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 39(3), pages 209-227, May.
    11. Grimm, Veronika & Martin, Alexander & Schmidt, Martin & Weibelzahl, Martin & Zöttl, Gregor, 2016. "Transmission and generation investment in electricity markets: The effects of market splitting and network fee regimes," European Journal of Operational Research, Elsevier, vol. 254(2), pages 493-509.
    12. Suresh Bolusani & Stefano Coniglio & Ted K. Ralphs & Sahar Tahernejad, 2020. "A Unified Framework for Multistage Mixed Integer Linear Optimization," Springer Optimization and Its Applications, in: Stephan Dempe & Alain Zemkoho (ed.), Bilevel Optimization, chapter 0, pages 513-560, Springer.
    13. Sun, Yanshuo & Schonfeld, Paul, 2015. "Stochastic capacity expansion models for airport facilities," Transportation Research Part B: Methodological, Elsevier, vol. 80(C), pages 1-18.
    14. Jeph Abara, 1989. "Applying Integer Linear Programming to the Fleet Assignment Problem," Interfaces, INFORMS, vol. 19(4), pages 20-28, August.
    15. Francisco Facchinei & Christian Kanzow, 2010. "Generalized Nash Equilibrium Problems," Annals of Operations Research, Springer, vol. 175(1), pages 177-211, March.
    16. Phillip J. Lederer & Ramakrishnan S. Nambimadom, 1998. "Airline Network Design," Operations Research, INFORMS, vol. 46(6), pages 785-804, December.
    17. Benoît Colson & Patrice Marcotte & Gilles Savard, 2007. "An overview of bilevel optimization," Annals of Operations Research, Springer, vol. 153(1), pages 235-256, September.
    18. Mas-Colell, Andreu & Whinston, Michael D. & Green, Jerry R., 1995. "Microeconomic Theory," OUP Catalogue, Oxford University Press, number 9780195102680.
    19. Grimm, Veronika & Martin, Alexander & Weibelzahl, Martin & Zöttl, Gregor, 2016. "On the long run effects of market splitting: Why more price zones might decrease welfare," Energy Policy, Elsevier, vol. 94(C), pages 453-467.
    20. Nicola Basilico & Stefano Coniglio & Nicola Gatti & Alberto Marchesi, 2020. "Bilevel programming methods for computing single-leader-multi-follower equilibria in normal-form and polymatrix games," EURO Journal on Computational Optimization, Springer;EURO - The Association of European Operational Research Societies, vol. 8(1), pages 3-31, March.
    21. Adler, Nicole, 2001. "Competition in a deregulated air transportation market," European Journal of Operational Research, Elsevier, vol. 129(2), pages 337-345, March.
    22. Cynthia Barnhart & Peter Belobaba & Amedeo R. Odoni, 2003. "Applications of Operations Research in the Air Transport Industry," Transportation Science, INFORMS, vol. 37(4), pages 368-391, November.
    23. Xiao, Yibin & Fu, Xiaowen & Zhang, Anming, 2013. "Demand uncertainty and airport capacity choice," Transportation Research Part B: Methodological, Elsevier, vol. 57(C), pages 91-104.
    24. Basso, Leonardo J., 2008. "Airport deregulation: Effects on pricing and capacity," International Journal of Industrial Organization, Elsevier, vol. 26(4), pages 1015-1031, July.
    25. Borenstein, Severin & Rose, Nancy L, 1994. "Competition and Price Dispersion in the U.S. Airline Industry," Journal of Political Economy, University of Chicago Press, vol. 102(4), pages 653-683, August.
    26. Manoj Lohatepanont & Cynthia Barnhart, 2004. "Airline Schedule Planning: Integrated Models and Algorithms for Schedule Design and Fleet Assignment," Transportation Science, INFORMS, vol. 38(1), pages 19-32, February.
    27. John Bowen, 2002. "Network Change, Deregulation, and Access in the Global Airline Industry," Economic Geography, Taylor & Francis Journals, vol. 78(4), pages 425-439, October.
    28. Santos, Miguel Gueifão & Antunes, António Pais, 2015. "Long-term evolution of airport networks: Optimization model and its application to the United States," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 73(C), pages 17-46.
    29. Zhang, Anming & Zhang, Yimin, 2006. "Airport capacity and congestion when carriers have market power," Journal of Urban Economics, Elsevier, vol. 60(2), pages 229-247, September.
    30. Oliver Faust & Jochen Gönsch & Robert Klein, 2017. "Demand-Oriented Integrated Scheduling for Point-to-Point Airlines," Transportation Science, INFORMS, vol. 51(1), pages 196-213, February.
    31. Russell A. Rushmeier & Spyridon A. Kontogiorgis, 1997. "Advances in the Optimization of Airline Fleet Assignment," Transportation Science, INFORMS, vol. 31(2), pages 159-169, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Okan Örsan Özener & Melda Örmeci Matoğlu & Güneş Erdoğan & Mohamed Haouari & Hasan Sözer, 2017. "Solving a large-scale integrated fleet assignment and crew pairing problem," Annals of Operations Research, Springer, vol. 253(1), pages 477-500, June.
    2. João P. Pita & Cynthia Barnhart & António P. Antunes, 2013. "Integrated Flight Scheduling and Fleet Assignment Under Airport Congestion," Transportation Science, INFORMS, vol. 47(4), pages 477-492, November.
    3. Kenan, Nabil & Diabat, Ali & Jebali, Aida, 2018. "Codeshare agreements in the integrated aircraft routing problem," Transportation Research Part B: Methodological, Elsevier, vol. 117(PA), pages 272-295.
    4. Birolini, Sebastian & Besana, Emanuele & Cattaneo, Mattia & Redondi, Renato & Sallan, Jose Maria, 2022. "An integrated connection planning and passenger allocation model for low-cost carriers," Journal of Air Transport Management, Elsevier, vol. 99(C).
    5. Oliver Faust & Jochen Gönsch & Robert Klein, 2017. "Demand-Oriented Integrated Scheduling for Point-to-Point Airlines," Transportation Science, INFORMS, vol. 51(1), pages 196-213, February.
    6. Gupta, Gautam & Goodchild, Anne & Hansen, Mark, 2011. "A competitive, charter air-service planning model for student athlete travel," Transportation Research Part B: Methodological, Elsevier, vol. 45(1), pages 128-149, January.
    7. Wang, Chunan & Wang, Xiaoyu, 2019. "Airport congestion delays and airline networks," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 122(C), pages 328-349.
    8. Sherali, Hanif D. & Bish, Ebru K. & Zhu, Xiaomei, 2006. "Airline fleet assignment concepts, models, and algorithms," European Journal of Operational Research, Elsevier, vol. 172(1), pages 1-30, July.
    9. Cynthia Barnhart & Amr Farahat & Manoj Lohatepanont, 2009. "Airline Fleet Assignment with Enhanced Revenue Modeling," Operations Research, INFORMS, vol. 57(1), pages 231-244, February.
    10. Lin, Ming Hsin & Zhang, Yimin, 2017. "Hub-airport congestion pricing and capacity investment," Transportation Research Part B: Methodological, Elsevier, vol. 101(C), pages 89-106.
    11. Tu, Ningwen & Li, Zhi-Chun & Fu, Xiaowen & Lei, Zheng, 2020. "Airline network competition in inter-continental market," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 143(C).
    12. Hanif Sherali & Ki-Hwan Bae & Mohamed Haouari, 2013. "A benders decomposition approach for an integrated airline schedule design and fleet assignment problem with flight retiming, schedule balance, and demand recapture," Annals of Operations Research, Springer, vol. 210(1), pages 213-244, November.
    13. Birolini, Sebastian & Antunes, António Pais & Cattaneo, Mattia & Malighetti, Paolo & Paleari, Stefano, 2021. "Integrated flight scheduling and fleet assignment with improved supply-demand interactions," Transportation Research Part B: Methodological, Elsevier, vol. 149(C), pages 162-180.
    14. Gillen, David & Jacquillat, Alexandre & Odoni, Amedeo R., 2016. "Airport demand management: The operations research and economics perspectives and potential synergies," Transportation Research Part A: Policy and Practice, Elsevier, vol. 94(C), pages 495-513.
    15. Chunhua Gao & Ellis Johnson & Barry Smith, 2009. "Integrated Airline Fleet and Crew Robust Planning," Transportation Science, INFORMS, vol. 43(1), pages 2-16, February.
    16. Lin, Ming Hsin & Zhang, Anming, 2016. "Hub congestion pricing: Discriminatory passenger charges," Economics of Transportation, Elsevier, vol. 5(C), pages 37-48.
    17. Belanger, Nicolas & Desaulniers, Guy & Soumis, Francois & Desrosiers, Jacques, 2006. "Periodic airline fleet assignment with time windows, spacing constraints, and time dependent revenues," European Journal of Operational Research, Elsevier, vol. 175(3), pages 1754-1766, December.
    18. Dixit, Aasheesh & Jakhar, Suresh Kumar, 2021. "Airport capacity management: A review and bibliometric analysis," Journal of Air Transport Management, Elsevier, vol. 91(C).
    19. Grimm, Veronika & Schewe, Lars & Schmidt, Martin & Zöttl, Gregor, 2017. "Uniqueness of market equilibrium on a network: A peak-load pricing approach," European Journal of Operational Research, Elsevier, vol. 261(3), pages 971-983.
    20. Martin Weibelzahl & Alexandra Märtz, 2020. "Optimal storage and transmission investments in a bilevel electricity market model," Annals of Operations Research, Springer, vol. 287(2), pages 911-940, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:orspec:v:43:y:2021:i:2:d:10.1007_s00291-021-00621-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.