IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v86y2017i1d10.1007_s11069-016-2678-1.html
   My bibliography  Save this article

Robustness of road systems to extreme flooding: using elements of GIS, travel demand, and network science

Author

Listed:
  • Amirhassan Kermanshah

    (University of Illinois at Chicago)

  • Sybil Derrible

    (University of Illinois at Chicago)

Abstract

The main objective of this article is to study the robustness of road networks to extreme flooding events that can negatively affect entire regional systems in a relatively unpredictable way. Here, we adopt a deterministic approach to simulate extreme flooding events in two cities, New York City and Chicago, by removing entire sections of road systems using U.S. FEMA floodplains. We then measure changes in the number of real trips that can be completed (using travel demand data), Geographical Information Systems properties, and network topological indicators. We notably measure and discuss how betweenness centrality is being redistributed after flooding. Broadly, robustness in spatial systems like road networks is dependent on many factors, including system size (number of nodes and links) and topological structure of the network. Expectedly, robustness also depends on geography, and cities that are naturally more at risk will tend to be less robust, and therefore the notion of robustness rapidly becomes sensitive to individual contexts.

Suggested Citation

  • Amirhassan Kermanshah & Sybil Derrible, 2017. "Robustness of road systems to extreme flooding: using elements of GIS, travel demand, and network science," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 86(1), pages 151-164, March.
  • Handle: RePEc:spr:nathaz:v:86:y:2017:i:1:d:10.1007_s11069-016-2678-1
    DOI: 10.1007/s11069-016-2678-1
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11069-016-2678-1
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11069-016-2678-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Derrible, Sybil & Kennedy, Christopher, 2010. "The complexity and robustness of metro networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(17), pages 3678-3691.
    2. Alan T. Murray & Timothy C. Matisziw & Tony H. Grubesic, 2008. "A Methodological Overview of Network Vulnerability Analysis," Growth and Change, Wiley Blackwell, vol. 39(4), pages 573-592, December.
    3. Jiang, Bin, 2007. "A topological pattern of urban street networks: Universality and peculiarity," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 384(2), pages 647-655.
    4. Peter Gottschalk & Erika McEntarfer & Robert Moffitt, 2008. "Trends in the Transitory Variance of Male Earnings in the U.S., 1991-2003: Preliminary Evidence from LEHD data," Boston College Working Papers in Economics 696, Boston College Department of Economics.
    5. Réka Albert & Hawoong Jeong & Albert-László Barabási, 2000. "Error and attack tolerance of complex networks," Nature, Nature, vol. 406(6794), pages 378-382, July.
    6. John J. Abowd & John Haltiwanger & Julia Lane, 2004. "Integrated Longitudinal Employer-Employee Data for the United States," American Economic Review, American Economic Association, vol. 94(2), pages 224-229, May.
    7. Kermanshah, A. & Derrible, S., 2016. "A geographical and multi-criteria vulnerability assessment of transportation networks against extreme earthquakes," Reliability Engineering and System Safety, Elsevier, vol. 153(C), pages 39-49.
    8. Martin, S. & Carr, R.D. & Faulon, J.-L., 2006. "Random removal of edges from scale free graphs," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 371(2), pages 870-876.
    9. Caitlin D. Cottrill & Sybil Derrible, 2015. "Leveraging Big Data for the Development of Transport Sustainability Indicators," Journal of Urban Technology, Taylor & Francis Journals, vol. 22(1), pages 45-64, January.
    10. Jenelius, Erik & Petersen, Tom & Mattsson, Lars-Göran, 2006. "Importance and exposure in road network vulnerability analysis," Transportation Research Part A: Policy and Practice, Elsevier, vol. 40(7), pages 537-560, August.
    11. Sybil Derrible, 2012. "Network Centrality of Metro Systems," PLOS ONE, Public Library of Science, vol. 7(7), pages 1-10, July.
    12. Sybil Derrible & Nasir Ahmad, 2015. "Network-Based and Binless Frequency Analyses," PLOS ONE, Public Library of Science, vol. 10(11), pages 1-10, November.
    13. Woods, David D., 2015. "Four concepts for resilience and the implications for the future of resilience engineering," Reliability Engineering and System Safety, Elsevier, vol. 141(C), pages 5-9.
    14. Michael A. P. Taylor, 2008. "Critical Transport Infrastructure in Urban Areas: Impacts of Traffic Incidents Assessed Using Accessibility‐Based Network Vulnerability Analysis," Growth and Change, Wiley Blackwell, vol. 39(4), pages 593-616, December.
    15. Charles Perrings, 1998. "Resilience in the Dynamics of Economy-Environment Systems," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 11(3), pages 503-520, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Shuliang & Chen, Chen & Zhang, Jianhua & Gu, Xifeng & Huang, Xiaodi, 2022. "Vulnerability assessment of urban road traffic systems based on traffic flow," International Journal of Critical Infrastructure Protection, Elsevier, vol. 38(C).
    2. Mohammad Zaher Serdar & Sami G. Al-Ghamdi, 2021. "Resiliency Assessment of Road Networks during Mega Sport Events: The Case of FIFA World Cup Qatar 2022," Sustainability, MDPI, vol. 13(22), pages 1-15, November.
    3. Boeing, Geoff & Ha, Jaehyun, 2024. "Resilient by design: Simulating street network disruptions across every urban area in the world," Transportation Research Part A: Policy and Practice, Elsevier, vol. 182(C).
    4. Rahimi-Golkhandan, Armin & Garvin, Michael J. & Brown, Bryan L., 2019. "Characterizing and measuring transportation infrastructure diversity through linkages with ecological stability theory," Transportation Research Part A: Policy and Practice, Elsevier, vol. 128(C), pages 114-130.
    5. Boeing, Geoff & Ha, Jaehyun, 2024. "Resilient by Design: Simulating Street Network Disruptions across Every Urban Area in the World," SocArXiv tk93y, Center for Open Science.
    6. Yat Yen & Pengjun Zhao & Muhammad T Sohail, 2021. "The morphology and circuity of walkable, bikeable, and drivable street networks in Phnom Penh, Cambodia," Environment and Planning B, , vol. 48(1), pages 169-185, January.
    7. Alex W. Dye & John B. Kim & Andrew McEvoy & Fang Fang & Karin L. Riley, 2021. "Evaluating rural Pacific Northwest towns for wildfire evacuation vulnerability," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 107(1), pages 911-935, May.
    8. Gangwal, Utkarsh & Dong, Shangjia, 2022. "Critical facility accessibility rapid failure early-warning detection and redundancy mapping in urban flooding," Reliability Engineering and System Safety, Elsevier, vol. 224(C).
    9. Weiping Wang & Saini Yang & Jianxi Gao & Fuyu Hu & Wanyi Zhao & H. Eugene Stanley, 2020. "An Integrated Approach for Assessing the Impact of Large‐Scale Future Floods on a Highway Transport System," Risk Analysis, John Wiley & Sons, vol. 40(9), pages 1780-1794, September.
    10. Ahmad, Nasir & Derrible, Sybil, 2018. "An information theory based robustness analysis of energy mix in US States," Energy Policy, Elsevier, vol. 120(C), pages 167-174.
    11. Madeline Allen & Leslie Gillespie-Marthaler & Mark Abkowitz & Janey Camp, 2020. "Evaluating flood resilience in rural communities: a case-based assessment of Dyer County, Tennessee," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 101(1), pages 173-194, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kashin Sugishita & Yasuo Asakura, 2021. "Vulnerability studies in the fields of transportation and complex networks: a citation network analysis," Public Transport, Springer, vol. 13(1), pages 1-34, March.
    2. Wang, Xiangrong & Koç, Yakup & Derrible, Sybil & Ahmad, Sk Nasir & Pino, Willem J.A. & Kooij, Robert E., 2017. "Multi-criteria robustness analysis of metro networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 474(C), pages 19-31.
    3. Reggiani, Aura & Nijkamp, Peter & Lanzi, Diego, 2015. "Transport resilience and vulnerability: The role of connectivity," Transportation Research Part A: Policy and Practice, Elsevier, vol. 81(C), pages 4-15.
    4. López, Fernando A. & Páez, Antonio & Carrasco, Juan A. & Ruminot, Natalia A., 2017. "Vulnerability of nodes under controlled network topology and flow autocorrelation conditions," Journal of Transport Geography, Elsevier, vol. 59(C), pages 77-87.
    5. Zhang, Mengyao & Huang, Tao & Guo, Zhaoxia & He, Zhenggang, 2022. "Complex-network-based traffic network analysis and dynamics: A comprehensive review," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 607(C).
    6. Rui Ding & Norsidah Ujang & Hussain Bin Hamid & Mohd Shahrudin Abd Manan & Rong Li & Safwan Subhi Mousa Albadareen & Ashkan Nochian & Jianjun Wu, 2019. "Application of Complex Networks Theory in Urban Traffic Network Researches," Networks and Spatial Economics, Springer, vol. 19(4), pages 1281-1317, December.
    7. Kermanshah, A. & Derrible, S., 2016. "A geographical and multi-criteria vulnerability assessment of transportation networks against extreme earthquakes," Reliability Engineering and System Safety, Elsevier, vol. 153(C), pages 39-49.
    8. Jenelius, Erik & Mattsson, Lars-Göran, 2012. "Road network vulnerability analysis of area-covering disruptions: A grid-based approach with case study," Transportation Research Part A: Policy and Practice, Elsevier, vol. 46(5), pages 746-760.
    9. Elisa Frutos Bernal & Angel Martín del Rey, 2019. "Study of the Structural and Robustness Characteristics of Madrid Metro Network," Sustainability, MDPI, vol. 11(12), pages 1-24, June.
    10. Meisam Akbarzadeh & Soroush Memarmontazerin & Sybil Derrible & Sayed Farzin Salehi Reihani, 2019. "The role of travel demand and network centrality on the connectivity and resilience of an urban street system," Transportation, Springer, vol. 46(4), pages 1127-1141, August.
    11. Aura Reggiani, 2012. "Accessibility, connectivity and resilience in complex networks," Chapters, in: Karst T. Geurs & Kevin J. Krizek & Aura Reggiani (ed.), Accessibility Analysis and Transport Planning, chapter 2, pages 15-36, Edward Elgar Publishing.
    12. Jiangang Shi & Shiping Wen & Xianbo Zhao & Guangdong Wu, 2019. "Sustainable Development of Urban Rail Transit Networks: A Vulnerability Perspective," Sustainability, MDPI, vol. 11(5), pages 1-24, March.
    13. Demirel, Hande & Kompil, Mert & Nemry, Françoise, 2015. "A framework to analyze the vulnerability of European road networks due to Sea-Level Rise (SLR) and sea storm surges," Transportation Research Part A: Policy and Practice, Elsevier, vol. 81(C), pages 62-76.
    14. Reggiani, Aura, 2013. "Network resilience for transport security: Some methodological considerations," Transport Policy, Elsevier, vol. 28(C), pages 63-68.
    15. Mohamad Darayi & Kash Barker & Joost R. Santos, 2017. "Component Importance Measures for Multi-Industry Vulnerability of a Freight Transportation Network," Networks and Spatial Economics, Springer, vol. 17(4), pages 1111-1136, December.
    16. Erik Jenelius & Lars-Göran Mattsson, 2011. "The impact of network density, travel and location patterns on regional road network vulnerability," ERSA conference papers ersa10p448, European Regional Science Association.
    17. Rolf Nyberg & Magnus Johansson, 2013. "Indicators of road network vulnerability to storm-felled trees," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 69(1), pages 185-199, October.
    18. Rodríguez-Núñez, Eduardo & García-Palomares, Juan Carlos, 2014. "Measuring the vulnerability of public transport networks," Journal of Transport Geography, Elsevier, vol. 35(C), pages 50-63.
    19. M. D. Yap & N. Oort & R. Nes & B. Arem, 2018. "Identification and quantification of link vulnerability in multi-level public transport networks: a passenger perspective," Transportation, Springer, vol. 45(4), pages 1161-1180, July.
    20. H Jönsson & J Johansson & H Johansson, 2008. "Identifying critical components in technical infrastructure networks," Journal of Risk and Reliability, , vol. 222(2), pages 235-243, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:86:y:2017:i:1:d:10.1007_s11069-016-2678-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.