IDEAS home Printed from https://ideas.repec.org/a/eee/ijocip/v38y2022ics1874548222000269.html
   My bibliography  Save this article

Vulnerability assessment of urban road traffic systems based on traffic flow

Author

Listed:
  • Wang, Shuliang
  • Chen, Chen
  • Zhang, Jianhua
  • Gu, Xifeng
  • Huang, Xiaodi

Abstract

The vulnerability assessment of urban road traffic systems is of great significance in urban management, particularly for ensuring their safety and sustainable operations. The majority of existing work focuses mainly on road network performance from the perspective of its structure but ignores analysis of its functional vulnerability. As such, this paper proposes a novel framework for analysing the vulnerability of road networks based on their real traffic flow. Specifically, a weighted road traffic network model is first constructed with the traffic flow obtained by using a user equilibrium model, which is built on the real original-destination data extracted from taxi trips. Second, a comprehensive indicator for node importance is introduced by integrating the entropy weight method with the technique for order preference. The vulnerability of a network in different scenarios is analyzed from both the structural and functional perspectives. Finally, several experiments have been conducted on the road networks in Haikou, China. The experimental results show that the proposed framework performs well. In addition, we find that nodes with a higher weighted betweenness have a greater impact on the overall vulnerability of a network, and the network travel time under the comprehensive indicator is correlated positively with flow loss.

Suggested Citation

  • Wang, Shuliang & Chen, Chen & Zhang, Jianhua & Gu, Xifeng & Huang, Xiaodi, 2022. "Vulnerability assessment of urban road traffic systems based on traffic flow," International Journal of Critical Infrastructure Protection, Elsevier, vol. 38(C).
  • Handle: RePEc:eee:ijocip:v:38:y:2022:i:c:s1874548222000269
    DOI: 10.1016/j.ijcip.2022.100536
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1874548222000269
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ijcip.2022.100536?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hong, Liu & Ouyang, Min & Xu, Min & Hu, Peipei, 2020. "Time-varied accessibility and vulnerability analysis of integrated metro and high-speed rail systems," Reliability Engineering and System Safety, Elsevier, vol. 193(C).
    2. Peng, Peng & Yang, Yu & Lu, Feng & Cheng, Shifen & Mou, Naixia & Yang, Ren, 2018. "Modelling the competitiveness of the ports along the Maritime Silk Road with big data," Transportation Research Part A: Policy and Practice, Elsevier, vol. 118(C), pages 852-867.
    3. Xu, Shuang & Wang, Pei, 2017. "Identifying important nodes by adaptive LeaderRank," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 469(C), pages 654-664.
    4. He, Zhidong & Navneet, Kumar & van Dam, Wirdmer & Van Mieghem, Piet, 2021. "Robustness assessment of multimodal freight transport networks," Reliability Engineering and System Safety, Elsevier, vol. 207(C).
    5. Wang, Bi & Su, Qin & Chin, Kwai Sang, 2021. "Vulnerability assessment of China–Europe Railway Express multimodal transport network under cascading failures," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 584(C).
    6. Liu, Honglu & Tian, Zhihong & Huang, Anqiang & Yang, Zaili, 2018. "Analysis of vulnerabilities in maritime supply chains," Reliability Engineering and System Safety, Elsevier, vol. 169(C), pages 475-484.
    7. Linyuan Lü & Tao Zhou & Qian-Ming Zhang & H. Eugene Stanley, 2016. "The H-index of a network node and its relation to degree and coreness," Nature Communications, Nature, vol. 7(1), pages 1-7, April.
    8. Berdica, Katja, 2002. "An introduction to road vulnerability: what has been done, is done and should be done," Transport Policy, Elsevier, vol. 9(2), pages 117-127, April.
    9. Agryzkov, Taras & Tortosa, Leandro & Vicent, Jose F., 2019. "A variant of the current flow betweenness centrality and its application in urban networks," Applied Mathematics and Computation, Elsevier, vol. 347(C), pages 600-615.
    10. Di, Zhen & Yang, Lixing & Qi, Jianguo & Gao, Ziyou, 2018. "Transportation network design for maximizing flow-based accessibility," Transportation Research Part B: Methodological, Elsevier, vol. 110(C), pages 209-238.
    11. Huang, Wencheng & Zhou, Bowen & Yu, Yaocheng & Yin, Dezhi, 2021. "Vulnerability analysis of road network for dangerous goods transportation considering intentional attack: Based on Cellular Automata," Reliability Engineering and System Safety, Elsevier, vol. 214(C).
    12. Hoogendoorn, Serge P. & Bovy, Piet H. L., 2000. "Continuum modeling of multiclass traffic flow," Transportation Research Part B: Methodological, Elsevier, vol. 34(2), pages 123-146, February.
    13. Cats, Oded & Koppenol, Gert-Jaap & Warnier, Martijn, 2017. "Robustness assessment of link capacity reduction for complex networks: Application for public transport systems," Reliability Engineering and System Safety, Elsevier, vol. 167(C), pages 544-553.
    14. Serdar Çolak & Antonio Lima & Marta C. González, 2016. "Understanding congested travel in urban areas," Nature Communications, Nature, vol. 7(1), pages 1-8, April.
    15. Knoop, Victor L. & Snelder, Maaike & van Zuylen, Henk J. & Hoogendoorn, Serge P., 2012. "Link-level vulnerability indicators for real-world networks," Transportation Research Part A: Policy and Practice, Elsevier, vol. 46(5), pages 843-854.
    16. Porta, Sergio & Crucitti, Paolo & Latora, Vito, 2006. "The network analysis of urban streets: A dual approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 369(2), pages 853-866.
    17. Sergey V. Buldyrev & Roni Parshani & Gerald Paul & H. Eugene Stanley & Shlomo Havlin, 2010. "Catastrophic cascade of failures in interdependent networks," Nature, Nature, vol. 464(7291), pages 1025-1028, April.
    18. Feng, Huifang & Bai, Fengshan & Xu, Youji, 2019. "Identification of critical roads in urban transportation network based on GPS trajectory data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 535(C).
    19. Amirhassan Kermanshah & Sybil Derrible, 2017. "Robustness of road systems to extreme flooding: using elements of GIS, travel demand, and network science," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 86(1), pages 151-164, March.
    20. Huang, Wencheng & Zhou, Bowen & Yu, Yaocheng & Sun, Hao & Xu, Pengpeng, 2021. "Using the disaster spreading theory to analyze the cascading failure of urban rail transit network," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    21. Gu, Yu & Fu, Xiao & Liu, Zhiyuan & Xu, Xiangdong & Chen, Anthony, 2020. "Performance of transportation network under perturbations: Reliability, vulnerability, and resilience," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 133(C).
    22. Zarghami, Seyed Ashkan & Dumrak, Jantanee, 2021. "Unearthing vulnerability of supply provision in logistics networks to the black swan events: Applications of entropy theory and network analysis," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    23. Jingyi Lin & Yifang Ban, 2013. "Complex Network Topology of Transportation Systems," Transport Reviews, Taylor & Francis Journals, vol. 33(6), pages 658-685, November.
    24. (Sean) Qian, Zhen & Li, Jia & Li, Xiaopeng & Zhang, Michael & Wang, Haizhong, 2017. "Modeling heterogeneous traffic flow: A pragmatic approach," Transportation Research Part B: Methodological, Elsevier, vol. 99(C), pages 183-204.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wei Xu & Dillip Kumar Das & Željko Stević & Marko Subotić & Adel F. Alrasheedi & Shiru Sun, 2023. "Trapezoidal Interval Type-2 Fuzzy PIPRECIA-MARCOS Model for Management Efficiency of Traffic Flow on Observed Road Sections," Mathematics, MDPI, vol. 11(12), pages 1-22, June.
    2. Xinyu Zhuang & Li Zhang & Jie Lu, 2022. "Past—Present—Future: Urban Spatial Succession and Transition of Rail Transit Station Zones in Japan," IJERPH, MDPI, vol. 19(20), pages 1-35, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pan, Shouzheng & Yan, Hai & He, Jia & He, Zhengbing, 2021. "Vulnerability and resilience of transportation systems: A recent literature review," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 581(C).
    2. Zhang, Jianhua & Shao, Wenchao & Yang, Liqiang & Zhao, Xun & Liu, Weizhi, 2023. "Robustness assessments of urban rail transit networks based on user equilibrium with time compensation mechanism," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 613(C).
    3. Lu, Qing-Chang & Zhang, Lei & Xu, Peng-Cheng & Cui, Xin & Li, Jing, 2022. "Modeling network vulnerability of urban rail transit under cascading failures: A Coupled Map Lattices approach," Reliability Engineering and System Safety, Elsevier, vol. 221(C).
    4. He, Zhidong & Navneet, Kumar & van Dam, Wirdmer & Van Mieghem, Piet, 2021. "Robustness assessment of multimodal freight transport networks," Reliability Engineering and System Safety, Elsevier, vol. 207(C).
    5. Abdelaty, Hatem & Mohamed, Moataz & Ezzeldin, Mohamed & El-Dakhakhni, Wael, 2022. "Temporal robustness assessment framework for city-scale bus transit networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 606(C).
    6. Wang, Zhaojing & Jia, Limin & Ma, Xiaoping & Sun, Xuehui & Tang, Qianxue & Qian, Sina, 2022. "Accessibility-oriented performance evaluation of high-speed railways using a three-layer network model," Reliability Engineering and System Safety, Elsevier, vol. 222(C).
    7. Almotahari, Amirmasoud & Yazici, M. Anil, 2019. "A link criticality index embedded in the convex combinations solution of user equilibrium traffic assignment," Transportation Research Part A: Policy and Practice, Elsevier, vol. 126(C), pages 67-82.
    8. Laura Alessandretti & Luis Guillermo Natera Orozco & Meead Saberi & Michael Szell & Federico Battiston, 2023. "Multimodal urban mobility and multilayer transport networks," Environment and Planning B, , vol. 50(8), pages 2038-2070, October.
    9. Richard Connors & David Watling, 2015. "Assessing the Demand Vulnerability of Equilibrium Traffic Networks via Network Aggregation," Networks and Spatial Economics, Springer, vol. 15(2), pages 367-395, June.
    10. Wen, Tao & Gao, Qiuya & Chen, Yu-wang & Cheong, Kang Hao, 2022. "Exploring the vulnerability of transportation networks by entropy: A case study of Asia–Europe maritime transportation network," Reliability Engineering and System Safety, Elsevier, vol. 226(C).
    11. Xu, Xiangdong & Qu, Kai & Chen, Anthony & Yang, Chao, 2021. "A new day-to-day dynamic network vulnerability analysis approach with Weibit-based route adjustment process," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 153(C).
    12. Mengying Cui & David Levinson, 2018. "Accessibility analysis of risk severity," Transportation, Springer, vol. 45(4), pages 1029-1050, July.
    13. Xueguo Xu & Chen Xu & Wenxin Zhang, 2022. "Research on the Destruction Resistance of Giant Urban Rail Transit Network from the Perspective of Vulnerability," Sustainability, MDPI, vol. 14(12), pages 1-26, June.
    14. Zhou, Yaoming & Wang, Junwei, 2018. "Efficiency of complex networks under failures and attacks: A percolation approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 512(C), pages 658-664.
    15. Mohamad Darayi & Kash Barker & Joost R. Santos, 2017. "Component Importance Measures for Multi-Industry Vulnerability of a Freight Transportation Network," Networks and Spatial Economics, Springer, vol. 17(4), pages 1111-1136, December.
    16. Karolina Dudzic-Gyurkovich, 2023. "Study of Centrality Measures in the Network of Green Spaces in the City of Krakow," Sustainability, MDPI, vol. 15(18), pages 1-30, September.
    17. Federico Karagulian & Gaetano Valenti & Carlo Liberto & Matteo Corazza, 2022. "A Methodology to Estimate Functional Vulnerability Using Floating Car Data," Sustainability, MDPI, vol. 15(1), pages 1-15, December.
    18. Mahyar, Hamidreza & Hasheminezhad, Rouzbeh & Ghalebi K., Elahe & Nazemian, Ali & Grosu, Radu & Movaghar, Ali & Rabiee, Hamid R., 2018. "Compressive sensing of high betweenness centrality nodes in networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 497(C), pages 166-184.
    19. Lu, Qing-Chang & Xu, Peng-Cheng & Zhao, Xiangmo & Zhang, Lei & Li, Xiaoling & Cui, Xin, 2022. "Measuring network interdependency between dependent networks: A supply-demand-based approach," Reliability Engineering and System Safety, Elsevier, vol. 225(C).
    20. Gangwal, Utkarsh & Singh, Mayank & Pandey, Pradumn Kumar & Kamboj, Deepak & Chatterjee, Samrat & Bhatia, Udit, 2022. "Identifying early-warning indicators of onset of sudden collapse in networked infrastructure systems against sequential disruptions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 591(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ijocip:v:38:y:2022:i:c:s1874548222000269. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/international-journal-of-critical-infrastructure-protection .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.