IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v222y2022ics0951832022000837.html
   My bibliography  Save this article

Accessibility-oriented performance evaluation of high-speed railways using a three-layer network model

Author

Listed:
  • Wang, Zhaojing
  • Jia, Limin
  • Ma, Xiaoping
  • Sun, Xuehui
  • Tang, Qianxue
  • Qian, Sina

Abstract

High-speed railways, as dominant transportation patterns, constitute a large-scale complex network. Network performance is critical for high-level transportation services in transportation management. However, existing studies generally adopt pure topological indicators to evaluate performance in a single network and without considering the specific characteristics of rail transportation. This paper modeled the high-speed railway as a three-layer network including topological, functional, and service layers and assessed the integrated network performance from the view of transportation accessibility. In addition, the rail stations were prioritized and their performances in different layers were compared to analyze whether the total integrated performance was restricted by its connection abilities, functional capacities, and transportation service level. Finally, a case study of the high-speed rail network in China and comparisons with other traditional evaluation methods were conducted to verify the feasibility and superiority of the model. The findings of this study enable to provide management implications for rail transportation planning, organization, and operations.

Suggested Citation

  • Wang, Zhaojing & Jia, Limin & Ma, Xiaoping & Sun, Xuehui & Tang, Qianxue & Qian, Sina, 2022. "Accessibility-oriented performance evaluation of high-speed railways using a three-layer network model," Reliability Engineering and System Safety, Elsevier, vol. 222(C).
  • Handle: RePEc:eee:reensy:v:222:y:2022:i:c:s0951832022000837
    DOI: 10.1016/j.ress.2022.108411
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832022000837
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2022.108411?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Adjetey-Bahun, Kpotissan & Birregah, Babiga & Châtelet, Eric & Planchet, Jean-Luc, 2016. "A model to quantify the resilience of mass railway transportation systems," Reliability Engineering and System Safety, Elsevier, vol. 153(C), pages 1-14.
    2. Roucolle, Chantal & Seregina, Tatiana & Urdanoz, Miguel, 2020. "Measuring the development of airline networks: Comprehensive indicators," Transportation Research Part A: Policy and Practice, Elsevier, vol. 133(C), pages 303-324.
    3. He, Zhidong & Navneet, Kumar & van Dam, Wirdmer & Van Mieghem, Piet, 2021. "Robustness assessment of multimodal freight transport networks," Reliability Engineering and System Safety, Elsevier, vol. 207(C).
    4. Xuelei Meng & Wanli Xiang & Li Wang, 2015. "Controllability of Train Service Network," Mathematical Problems in Engineering, Hindawi, vol. 2015, pages 1-8, May.
    5. Jin, Jian Gang & Tang, Loon Ching & Sun, Lijun & Lee, Der-Horng, 2014. "Enhancing metro network resilience via localized integration with bus services," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 63(C), pages 17-30.
    6. Liu, Honglu & Tian, Zhihong & Huang, Anqiang & Yang, Zaili, 2018. "Analysis of vulnerabilities in maritime supply chains," Reliability Engineering and System Safety, Elsevier, vol. 169(C), pages 475-484.
    7. Hosseini, Seyedmohsen & Barker, Kash & Ramirez-Marquez, Jose E., 2016. "A review of definitions and measures of system resilience," Reliability Engineering and System Safety, Elsevier, vol. 145(C), pages 47-61.
    8. Li, Tao & Rong, Lili, 2020. "A comprehensive method for the robustness assessment of high-speed rail network with operation data: A case in China," Transportation Research Part A: Policy and Practice, Elsevier, vol. 132(C), pages 666-681.
    9. Khaled, Abdullah A. & Jin, Mingzhou & Clarke, David B. & Hoque, Mohammad A., 2015. "Train design and routing optimization for evaluating criticality of freight railroad infrastructures," Transportation Research Part B: Methodological, Elsevier, vol. 71(C), pages 71-84.
    10. Sun, Daniel (Jian) & Guan, Shituo, 2016. "Measuring vulnerability of urban metro network from line operation perspective," Transportation Research Part A: Policy and Practice, Elsevier, vol. 94(C), pages 348-359.
    11. Sergey V. Buldyrev & Roni Parshani & Gerald Paul & H. Eugene Stanley & Shlomo Havlin, 2010. "Catastrophic cascade of failures in interdependent networks," Nature, Nature, vol. 464(7291), pages 1025-1028, April.
    12. Chassin, David P. & Posse, Christian, 2005. "Evaluating North American electric grid reliability using the Barabási–Albert network model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 355(2), pages 667-677.
    13. Faturechi, Reza & Miller-Hooks, Elise, 2014. "Travel time resilience of roadway networks under disaster," Transportation Research Part B: Methodological, Elsevier, vol. 70(C), pages 47-64.
    14. Goldbeck, Nils & Angeloudis, Panagiotis & Ochieng, Washington Y., 2019. "Resilience assessment for interdependent urban infrastructure systems using dynamic network flow models," Reliability Engineering and System Safety, Elsevier, vol. 188(C), pages 62-79.
    15. López, Fernando A. & Páez, Antonio & Carrasco, Juan A. & Ruminot, Natalia A., 2017. "Vulnerability of nodes under controlled network topology and flow autocorrelation conditions," Journal of Transport Geography, Elsevier, vol. 59(C), pages 77-87.
    16. Zhang, Jianhua & Hu, Funian & Wang, Shuliang & Dai, Yang & Wang, Yixing, 2016. "Structural vulnerability and intervention of high speed railway networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 462(C), pages 743-751.
    17. Ouyang, Min & Zhao, Lijing & Hong, Liu & Pan, Zhezhe, 2014. "Comparisons of complex network based models and real train flow model to analyze Chinese railway vulnerability," Reliability Engineering and System Safety, Elsevier, vol. 123(C), pages 38-46.
    18. Quan Mao & Nan Li, 2018. "Assessment of the impact of interdependencies on the resilience of networked critical infrastructure systems," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 93(1), pages 315-337, August.
    19. Hong, Liu & Yan, Yongze & Ouyang, Min & Tian, Hui & He, Xiaozheng, 2017. "Vulnerability effects of passengers' intermodal transfer distance preference and subway expansion on complementary urban public transportation systems," Reliability Engineering and System Safety, Elsevier, vol. 158(C), pages 58-72.
    20. Xu, Wangtu (Ato) & Zhou, Jiangping & Qiu, Guo, 2018. "China's high-speed rail network construction and planning over time: a network analysis," Journal of Transport Geography, Elsevier, vol. 70(C), pages 40-54.
    21. Yan, Yongze & Hong, Liu & He, Xiaozheng & Ouyang, Min & Peeta, Srinivas & Chen, Xueguang, 2017. "Pre-disaster investment decisions for strengthening the Chinese railway system under earthquakes," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 105(C), pages 39-59.
    22. Ouyang, Min & Pan, ZheZhe & Hong, Liu & He, Yue, 2015. "Vulnerability analysis of complementary transportation systems with applications to railway and airline systems in China," Reliability Engineering and System Safety, Elsevier, vol. 142(C), pages 248-257.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shang, Qingxue & Guo, Xiaodong & Li, Jichao & Wang, Tao, 2022. "Post-earthquake health care service accessibility assessment framework and its application in a medium-sized city," Reliability Engineering and System Safety, Elsevier, vol. 228(C).
    2. Hongyan Dui & Yuheng Yang & Yun-an Zhang & Yawen Zhu, 2022. "Recovery Analysis and Maintenance Priority of Metro Networks Based on Importance Measure," Mathematics, MDPI, vol. 10(21), pages 1-20, October.
    3. Yi Liu & Senbin Yu & Chaoyang Zhang & Peiran Zhang & Yang Wang & Liang Gao, 2022. "Critical Percolation on Temporal High-Speed Railway Networks," Mathematics, MDPI, vol. 10(24), pages 1-8, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pan, Shouzheng & Yan, Hai & He, Jia & He, Zhengbing, 2021. "Vulnerability and resilience of transportation systems: A recent literature review," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 581(C).
    2. Hong, Liu & Ye, Bowen & Yan, Han & Zhang, Hui & Ouyang, Min & (Sean) He, Xiaozheng, 2019. "Spatiotemporal vulnerability analysis of railway systems with heterogeneous train flows," Transportation Research Part A: Policy and Practice, Elsevier, vol. 130(C), pages 725-744.
    3. Li, Tao & Rong, Lili, 2021. "Impacts of service feature on vulnerability analysis of high-speed rail network," Transport Policy, Elsevier, vol. 110(C), pages 238-253.
    4. Bellè, Andrea & Zeng, Zhiguo & Duval, Carole & Sango, Marc & Barros, Anne, 2022. "Modeling and vulnerability analysis of interdependent railway and power networks: Application to British test systems," Reliability Engineering and System Safety, Elsevier, vol. 217(C).
    5. Li, Tao & Rong, Lili & Yan, Kesheng, 2019. "Vulnerability analysis and critical area identification of public transport system: A case of high-speed rail and air transport coupling system in China," Transportation Research Part A: Policy and Practice, Elsevier, vol. 127(C), pages 55-70.
    6. Li, Tao & Rong, Lili, 2020. "A comprehensive method for the robustness assessment of high-speed rail network with operation data: A case in China," Transportation Research Part A: Policy and Practice, Elsevier, vol. 132(C), pages 666-681.
    7. Tang, Junqing & Xu, Lei & Luo, Chunling & Ng, Tsan Sheng Adam, 2021. "Multi-disruption resilience assessment of rail transit systems with optimized commuter flows," Reliability Engineering and System Safety, Elsevier, vol. 214(C).
    8. Goldbeck, Nils & Angeloudis, Panagiotis & Ochieng, Washington Y., 2019. "Resilience assessment for interdependent urban infrastructure systems using dynamic network flow models," Reliability Engineering and System Safety, Elsevier, vol. 188(C), pages 62-79.
    9. Xiao Feng & Shiwei He & Xuchao Chen & Guangye Li, 2021. "Mitigating the vulnerability of an air-high-speed railway transportation network: From the perspective of predisruption response," Journal of Risk and Reliability, , vol. 235(3), pages 474-490, June.
    10. Adel Mottahedi & Farhang Sereshki & Mohammad Ataei & Ali Nouri Qarahasanlou & Abbas Barabadi, 2021. "The Resilience of Critical Infrastructure Systems: A Systematic Literature Review," Energies, MDPI, vol. 14(6), pages 1-32, March.
    11. Yin, Jiateng & Ren, Xianliang & Liu, Ronghui & Tang, Tao & Su, Shuai, 2022. "Quantitative analysis for resilience-based urban rail systems: A hybrid knowledge-based and data-driven approach," Reliability Engineering and System Safety, Elsevier, vol. 219(C).
    12. Zhang, Mengyao & Huang, Tao & Guo, Zhaoxia & He, Zhenggang, 2022. "Complex-network-based traffic network analysis and dynamics: A comprehensive review," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 607(C).
    13. Rahimi-Golkhandan, Armin & Garvin, Michael J. & Brown, Bryan L., 2019. "Characterizing and measuring transportation infrastructure diversity through linkages with ecological stability theory," Transportation Research Part A: Policy and Practice, Elsevier, vol. 128(C), pages 114-130.
    14. Milan Janić, 2018. "Modelling the resilience of rail passenger transport networks affected by large-scale disruptive events: the case of HSR (high speed rail)," Transportation, Springer, vol. 45(4), pages 1101-1137, July.
    15. Lu, Qing-Chang & Xu, Peng-Cheng & Zhao, Xiangmo & Zhang, Lei & Li, Xiaoling & Cui, Xin, 2022. "Measuring network interdependency between dependent networks: A supply-demand-based approach," Reliability Engineering and System Safety, Elsevier, vol. 225(C).
    16. Poulin, Craig & Kane, Michael B., 2021. "Infrastructure resilience curves: Performance measures and summary metrics," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    17. Hong, Liu & Yan, Yongze & Ouyang, Min & Tian, Hui & He, Xiaozheng, 2017. "Vulnerability effects of passengers' intermodal transfer distance preference and subway expansion on complementary urban public transportation systems," Reliability Engineering and System Safety, Elsevier, vol. 158(C), pages 58-72.
    18. Hong, Liu & Zhong, Xin & Ouyang, Min & Tian, Hui & He, Xiaozheng, 2019. "Vulnerability analysis of public transit systems from the perspective of urban residential communities," Reliability Engineering and System Safety, Elsevier, vol. 189(C), pages 143-156.
    19. Noguchi, Hiroki & Fuse, Masaaki, 2020. "Rethinking critical node problem for railway networks from the perspective of turn-back operation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 558(C).
    20. Zou, Qiling & Chen, Suren, 2019. "Enhancing resilience of interdependent traffic-electric power system," Reliability Engineering and System Safety, Elsevier, vol. 191(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:222:y:2022:i:c:s0951832022000837. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.