IDEAS home Printed from https://ideas.repec.org/a/eee/transa/v94y2016icp348-359.html
   My bibliography  Save this article

Measuring vulnerability of urban metro network from line operation perspective

Author

Listed:
  • Sun, Daniel (Jian)
  • Guan, Shituo

Abstract

Urban metro systems are subject to recurring service disruption for various reasons, such as mechanical or electrical failure, adverse weather, or other accidents. In recent years, studies on metro networks have attracted increasing attention because the consequence of operational accidents is barely affordable. This study proposes to measure the metro network vulnerability from the perspective of line operation by taking the Shanghai metro network as a case study. As opposed to previous studies that focused largely on disruption of important nodes or links, this study investigates the disruption from the line operation perspective. Betweenness centrality (BC) and passenger betweenness centrality (PBC), number of missed trips, weighted average path length, and weighted global efficiency were analyzed considering relative disruption probability of each line. Passenger flow distribution and re-distribution were simulated for different disruption scenarios based on all-or-nothing assignment rule. The results indicate that the metro lines carrying a large number of passengers generally have a significant impact on the network vulnerability. The lines with circular topological form also have a significant influence on passenger flow re-distribution in case of a disruption. The results of this study provide suggestions on metro system administration for potential improvement of the performance of operation, and passengers may meanwhile have an improved alternate plan for their commute trip when a disruption occurs.

Suggested Citation

  • Sun, Daniel (Jian) & Guan, Shituo, 2016. "Measuring vulnerability of urban metro network from line operation perspective," Transportation Research Part A: Policy and Practice, Elsevier, vol. 94(C), pages 348-359.
  • Handle: RePEc:eee:transa:v:94:y:2016:i:c:p:348-359
    DOI: 10.1016/j.tra.2016.09.024
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0965856415301555
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Berdica, Katja, 2002. "An introduction to road vulnerability: what has been done, is done and should be done," Transport Policy, Elsevier, vol. 9(2), pages 117-127, April.
    2. Derrible, Sybil & Kennedy, Christopher, 2010. "The complexity and robustness of metro networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(17), pages 3678-3691.
    3. Oded Cats & Erik Jenelius, 2014. "Dynamic Vulnerability Analysis of Public Transport Networks: Mitigation Effects of Real-Time Information," Networks and Spatial Economics, Springer, vol. 14(3), pages 435-463, December.
    4. Reggiani, Aura & Nijkamp, Peter & Lanzi, Diego, 2015. "Transport resilience and vulnerability: The role of connectivity," Transportation Research Part A: Policy and Practice, Elsevier, vol. 81(C), pages 4-15.
    5. Janić, Milan, 2015. "Reprint of “Modelling the resilience, friability and costs of an air transport network affected by a large-scale disruptive event”," Transportation Research Part A: Policy and Practice, Elsevier, vol. 81(C), pages 77-92.
    6. Sybil Derrible & Christopher Kennedy, 2010. "Characterizing metro networks: state, form, and structure," Transportation, Springer, vol. 37(2), pages 275-297, March.
    7. Daniel (Jian) Sun & Yuhan Zhao & Qing-Chang Lu, 2015. "Vulnerability Analysis of Urban Rail Transit Networks: A Case Study of Shanghai, China," Sustainability, MDPI, Open Access Journal, vol. 7(6), pages 1-18, May.
    8. repec:eee:jotrge:v:17:y:2009:i:3:p:234-244 is not listed on IDEAS
    9. Zhang, Jianhua & Xu, Xiaoming & Hong, Liu & Wang, Shuliang & Fei, Qi, 2011. "Networked analysis of the Shanghai subway network, in China," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(23), pages 4562-4570.
    10. repec:eee:jotrge:v:35:y:2014:i:c:p:50-63 is not listed on IDEAS
    11. Cats, Oded & Jenelius, Erik, 2015. "Planning for the unexpected: The value of reserve capacity for public transport network robustness," Transportation Research Part A: Policy and Practice, Elsevier, vol. 81(C), pages 47-61.
    12. Cadarso, Luis & Marín, Ángel & Maróti, Gábor, 2013. "Recovery of disruptions in rapid transit networks," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 53(C), pages 15-33.
    13. Chen, Guo & Dong, Zhao Yang & Hill, David J. & Zhang, Guo Hua & Hua, Ke Qian, 2010. "Attack structural vulnerability of power grids: A hybrid approach based on complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(3), pages 595-603.
    14. Janić, Milan, 2015. "Modelling the resilience, friability and costs of an air transport network affected by a large-scale disruptive event," Transportation Research Part A: Policy and Practice, Elsevier, vol. 71(C), pages 1-16.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. repec:eee:transa:v:108:y:2018:i:c:p:12-24 is not listed on IDEAS
    2. repec:eee:phsmap:v:506:y:2018:i:c:p:755-766 is not listed on IDEAS

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transa:v:94:y:2016:i:c:p:348-359. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/547/description#description .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.