IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Log in (now much improved!) to save this article

Measuring vulnerability of urban metro network from line operation perspective

Listed author(s):
  • Sun, Daniel (Jian)
  • Guan, Shituo
Registered author(s):

    Urban metro systems are subject to recurring service disruption for various reasons, such as mechanical or electrical failure, adverse weather, or other accidents. In recent years, studies on metro networks have attracted increasing attention because the consequence of operational accidents is barely affordable. This study proposes to measure the metro network vulnerability from the perspective of line operation by taking the Shanghai metro network as a case study. As opposed to previous studies that focused largely on disruption of important nodes or links, this study investigates the disruption from the line operation perspective. Betweenness centrality (BC) and passenger betweenness centrality (PBC), number of missed trips, weighted average path length, and weighted global efficiency were analyzed considering relative disruption probability of each line. Passenger flow distribution and re-distribution were simulated for different disruption scenarios based on all-or-nothing assignment rule. The results indicate that the metro lines carrying a large number of passengers generally have a significant impact on the network vulnerability. The lines with circular topological form also have a significant influence on passenger flow re-distribution in case of a disruption. The results of this study provide suggestions on metro system administration for potential improvement of the performance of operation, and passengers may meanwhile have an improved alternate plan for their commute trip when a disruption occurs.

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

    File URL: http://www.sciencedirect.com/science/article/pii/S0965856415301555
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

    Article provided by Elsevier in its journal Transportation Research Part A: Policy and Practice.

    Volume (Year): 94 (2016)
    Issue (Month): C ()
    Pages: 348-359

    as
    in new window

    Handle: RePEc:eee:transa:v:94:y:2016:i:c:p:348-359
    DOI: 10.1016/j.tra.2016.09.024
    Contact details of provider: Web page: http://www.elsevier.com/wps/find/journaldescription.cws_home/547/description#description

    Order Information: Postal: http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
    Web: https://shop.elsevier.com/order?id=547&ref=547_01_ooc_1&version=01

    References listed on IDEAS
    Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

    as
    in new window


    1. Derrible, Sybil & Kennedy, Christopher, 2010. "The complexity and robustness of metro networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(17), pages 3678-3691.
    2. Reggiani, Aura & Nijkamp, Peter & Lanzi, Diego, 2015. "Transport resilience and vulnerability: The role of connectivity," Transportation Research Part A: Policy and Practice, Elsevier, vol. 81(C), pages 4-15.
    3. Janić, Milan, 2015. "Reprint of “Modelling the resilience, friability and costs of an air transport network affected by a large-scale disruptive event”," Transportation Research Part A: Policy and Practice, Elsevier, vol. 81(C), pages 77-92.
    4. Daniel (Jian) Sun & Yuhan Zhao & Qing-Chang Lu, 2015. "Vulnerability Analysis of Urban Rail Transit Networks: A Case Study of Shanghai, China," Sustainability, MDPI, Open Access Journal, vol. 7(6), pages 1-18, May.
    5. Cats, Oded & Jenelius, Erik, 2015. "Planning for the unexpected: The value of reserve capacity for public transport network robustness," Transportation Research Part A: Policy and Practice, Elsevier, vol. 81(C), pages 47-61.
    6. Cadarso, Luis & Marín, Ángel & Maróti, Gábor, 2013. "Recovery of disruptions in rapid transit networks," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 53(C), pages 15-33.
    7. Berdica, Katja, 2002. "An introduction to road vulnerability: what has been done, is done and should be done," Transport Policy, Elsevier, vol. 9(2), pages 117-127, April.
    8. Oded Cats & Erik Jenelius, 2014. "Dynamic Vulnerability Analysis of Public Transport Networks: Mitigation Effects of Real-Time Information," Networks and Spatial Economics, Springer, vol. 14(3), pages 435-463, December.
    9. Sybil Derrible & Christopher Kennedy, 2010. "Characterizing metro networks: state, form, and structure," Transportation, Springer, vol. 37(2), pages 275-297, March.
    10. Zhang, Jianhua & Xu, Xiaoming & Hong, Liu & Wang, Shuliang & Fei, Qi, 2011. "Networked analysis of the Shanghai subway network, in China," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(23), pages 4562-4570.
    11. Chen, Guo & Dong, Zhao Yang & Hill, David J. & Zhang, Guo Hua & Hua, Ke Qian, 2010. "Attack structural vulnerability of power grids: A hybrid approach based on complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(3), pages 595-603.
    12. Janić, Milan, 2015. "Modelling the resilience, friability and costs of an air transport network affected by a large-scale disruptive event," Transportation Research Part A: Policy and Practice, Elsevier, vol. 71(C), pages 1-16.
    Full references (including those not matched with items on IDEAS)

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    When requesting a correction, please mention this item's handle: RePEc:eee:transa:v:94:y:2016:i:c:p:348-359. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu)

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.