IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v613y2023ics0378437123000857.html
   My bibliography  Save this article

Robustness assessments of urban rail transit networks based on user equilibrium with time compensation mechanism

Author

Listed:
  • Zhang, Jianhua
  • Shao, Wenchao
  • Yang, Liqiang
  • Zhao, Xun
  • Liu, Weizhi

Abstract

Urban rail transit has become an important mode of urban public transportation and has been paid more attention in the past two decades due to the advantages of low pollution and high efficiency. However, traffic incidents frequently occur in urban rail transit, therefore the robustness must be investigated to improve operation safety. In this paper, the user equilibrium with time compensation mechanism is adopted to study the robustness of urban rail transit networks (URTNs) subjected to failures, and Shanghai metro network is considered as an example to prove the feasibility and effectiveness of the proposed scheme. Meanwhile, the average travel time, the average link-flow and the demand–supply ratio are used to assess the characteristic changes of URTNs subjected to three attack modes. Moreover, the critical nodes and links can be discovered based on the proposed model, and the attacks to these critical nodes and links can greatly decrease the robustness of URTNs. The simulation results show that URTNs have better robustness when suffering the node attack and the link-demand attack and possess worse robustness when suffering the overall-demand attack, and we find that the uneven distribution of passenger flow results in the low network utilization.

Suggested Citation

  • Zhang, Jianhua & Shao, Wenchao & Yang, Liqiang & Zhao, Xun & Liu, Weizhi, 2023. "Robustness assessments of urban rail transit networks based on user equilibrium with time compensation mechanism," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 613(C).
  • Handle: RePEc:eee:phsmap:v:613:y:2023:i:c:s0378437123000857
    DOI: 10.1016/j.physa.2023.128530
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437123000857
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2023.128530?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hong, Liu & Ouyang, Min & Xu, Min & Hu, Peipei, 2020. "Time-varied accessibility and vulnerability analysis of integrated metro and high-speed rail systems," Reliability Engineering and System Safety, Elsevier, vol. 193(C).
    2. Yap, Menno & Cats, Oded, 2021. "Taking the path less travelled: Valuation of denied boarding in crowded public transport systems," Transportation Research Part A: Policy and Practice, Elsevier, vol. 147(C), pages 1-13.
    3. He, Zhidong & Navneet, Kumar & van Dam, Wirdmer & Van Mieghem, Piet, 2021. "Robustness assessment of multimodal freight transport networks," Reliability Engineering and System Safety, Elsevier, vol. 207(C).
    4. Almotahari, Amirmasoud & Yazici, M. Anil, 2019. "A link criticality index embedded in the convex combinations solution of user equilibrium traffic assignment," Transportation Research Part A: Policy and Practice, Elsevier, vol. 126(C), pages 67-82.
    5. Li, Tao & Rong, Lili, 2020. "A comprehensive method for the robustness assessment of high-speed rail network with operation data: A case in China," Transportation Research Part A: Policy and Practice, Elsevier, vol. 132(C), pages 666-681.
    6. Zheng, Jian-Feng & Gao, Zi-You & Zhao, Xiao-Mei, 2007. "Modeling cascading failures in congested complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 385(2), pages 700-706.
    7. Michael Florian & Sang Nguyen, 1976. "An Application and Validation of Equilibrium Trip Assignment Methods," Transportation Science, INFORMS, vol. 10(4), pages 374-390, November.
    8. Wandelt, Sebastian & Shi, Xing & Sun, Xiaoqian, 2021. "Estimation and improvement of transportation network robustness by exploiting communities," Reliability Engineering and System Safety, Elsevier, vol. 206(C).
    9. Nogal, Maria & O'Connor, Alan & Caulfield, Brian & Martinez-Pastor, Beatriz, 2016. "Resilience of traffic networks: From perturbation to recovery via a dynamic restricted equilibrium model," Reliability Engineering and System Safety, Elsevier, vol. 156(C), pages 84-96.
    10. Wu, J.J. & Sun, H.J. & Gao, Z.Y., 2007. "Cascading failures on weighted urban traffic equilibrium networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 386(1), pages 407-413.
    11. Zhang, Jianhua & Wang, Meng, 2019. "Transportation functionality vulnerability of urban rail transit networks based on movingblock: The case of Nanjing metro," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 535(C).
    12. Hong, Liu & Yan, Yongze & Ouyang, Min & Tian, Hui & He, Xiaozheng, 2017. "Vulnerability effects of passengers' intermodal transfer distance preference and subway expansion on complementary urban public transportation systems," Reliability Engineering and System Safety, Elsevier, vol. 158(C), pages 58-72.
    13. Cats, Oded & Koppenol, Gert-Jaap & Warnier, Martijn, 2017. "Robustness assessment of link capacity reduction for complex networks: Application for public transport systems," Reliability Engineering and System Safety, Elsevier, vol. 167(C), pages 544-553.
    14. Jafino, Bramka Arga, 2021. "An equity-based transport network criticality analysis," Transportation Research Part A: Policy and Practice, Elsevier, vol. 144(C), pages 204-221.
    15. Marguerite Frank & Philip Wolfe, 1956. "An algorithm for quadratic programming," Naval Research Logistics Quarterly, John Wiley & Sons, vol. 3(1‐2), pages 95-110, March.
    16. Zhao, Dandan & Li, Runchao & Peng, Hao & Zhong, Ming & Wang, Wei, 2022. "Higher-order percolation in simplicial complexes," Chaos, Solitons & Fractals, Elsevier, vol. 155(C).
    17. Serdar Çolak & Antonio Lima & Marta C. González, 2016. "Understanding congested travel in urban areas," Nature Communications, Nature, vol. 7(1), pages 1-8, April.
    18. Zhang, Jianhua & Wang, Ziqi & Wang, Shuliang & Shao, Wenchao & Zhao, Xun & Liu, Weizhi, 2021. "Vulnerability assessments of weighted urban rail transit networks with integrated coupled map lattices," Reliability Engineering and System Safety, Elsevier, vol. 214(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pan, Shouzheng & Yan, Hai & He, Jia & He, Zhengbing, 2021. "Vulnerability and resilience of transportation systems: A recent literature review," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 581(C).
    2. Wang, Shuliang & Chen, Chen & Zhang, Jianhua & Gu, Xifeng & Huang, Xiaodi, 2022. "Vulnerability assessment of urban road traffic systems based on traffic flow," International Journal of Critical Infrastructure Protection, Elsevier, vol. 38(C).
    3. Zhang, Jianhua & Wang, Ziqi & Wang, Shuliang & Shao, Wenchao & Zhao, Xun & Liu, Weizhi, 2021. "Vulnerability assessments of weighted urban rail transit networks with integrated coupled map lattices," Reliability Engineering and System Safety, Elsevier, vol. 214(C).
    4. Wang, Ziqi & Pei, Yulong & Liu, Jing & Liu, Hehang, 2023. "Vulnerability analysis of urban road networks based on traffic situation," International Journal of Critical Infrastructure Protection, Elsevier, vol. 41(C).
    5. Lu, Qing-Chang & Xu, Peng-Cheng & Zhao, Xiangmo & Zhang, Lei & Li, Xiaoling & Cui, Xin, 2022. "Measuring network interdependency between dependent networks: A supply-demand-based approach," Reliability Engineering and System Safety, Elsevier, vol. 225(C).
    6. Lu, Qing-Chang & Zhang, Lei & Xu, Peng-Cheng & Cui, Xin & Li, Jing, 2022. "Modeling network vulnerability of urban rail transit under cascading failures: A Coupled Map Lattices approach," Reliability Engineering and System Safety, Elsevier, vol. 221(C).
    7. Yu, Yun-Chi & Gardoni, Paolo, 2022. "Predicting road blockage due to building damage following earthquakes," Reliability Engineering and System Safety, Elsevier, vol. 219(C).
    8. Wandelt, Sebastian & Shi, Xing & Sun, Xiaoqian, 2021. "Estimation and improvement of transportation network robustness by exploiting communities," Reliability Engineering and System Safety, Elsevier, vol. 206(C).
    9. Wandelt, Sebastian & Lin, Wei & Sun, Xiaoqian & Zanin, Massimiliano, 2022. "From random failures to targeted attacks in network dismantling," Reliability Engineering and System Safety, Elsevier, vol. 218(PA).
    10. Zhang, Mengyao & Huang, Tao & Guo, Zhaoxia & He, Zhenggang, 2022. "Complex-network-based traffic network analysis and dynamics: A comprehensive review," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 607(C).
    11. Wang, Zhaojing & Jia, Limin & Ma, Xiaoping & Sun, Xuehui & Tang, Qianxue & Qian, Sina, 2022. "Accessibility-oriented performance evaluation of high-speed railways using a three-layer network model," Reliability Engineering and System Safety, Elsevier, vol. 222(C).
    12. Jinxiao Duan & Guanwen Zeng & Nimrod Serok & Daqing Li & Efrat Blumenfeld Lieberthal & Hai-Jun Huang & Shlomo Havlin, 2023. "Spatiotemporal dynamics of traffic bottlenecks yields an early signal of heavy congestions," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    13. Hong, Liu & Ye, Bowen & Yan, Han & Zhang, Hui & Ouyang, Min & (Sean) He, Xiaozheng, 2019. "Spatiotemporal vulnerability analysis of railway systems with heterogeneous train flows," Transportation Research Part A: Policy and Practice, Elsevier, vol. 130(C), pages 725-744.
    14. Liu, Aijun & Li, Zengxian & Shang, Wen-Long & Ochieng, Washington, 2023. "Performance evaluation model of transportation infrastructure: Perspective of COVID-19," Transportation Research Part A: Policy and Practice, Elsevier, vol. 170(C).
    15. Li, Tao & Rong, Lili, 2021. "Impacts of service feature on vulnerability analysis of high-speed rail network," Transport Policy, Elsevier, vol. 110(C), pages 238-253.
    16. Hu, Xinlei & Huang, Jie & Shi, Feng, 2022. "A robustness assessment with passenger flow data of high-speed rail network in China," Chaos, Solitons & Fractals, Elsevier, vol. 165(P1).
    17. Jaume Barceló, 1997. "A survey of some mathematical programming models in transportation," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 5(1), pages 1-40, June.
    18. Ren, Hai-Peng & Song, Jihong & Yang, Rong & Baptista, Murilo S. & Grebogi, Celso, 2016. "Cascade failure analysis of power grid using new load distribution law and node removal rule," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 442(C), pages 239-251.
    19. Huang, Wencheng & Zhou, Bowen & Yu, Yaocheng & Sun, Hao & Xu, Pengpeng, 2021. "Using the disaster spreading theory to analyze the cascading failure of urban rail transit network," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    20. Feng, Xiao & He, Shiwei & Li, Guangye & Chi, Jushang, 2021. "Transfer network of high-speed rail and aviation: Structure and critical components," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 581(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:613:y:2023:i:c:s0378437123000857. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.