IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v84y2016i2d10.1007_s11069-016-2457-z.html
   My bibliography  Save this article

Accounting for spatial correlation in tsunami evacuation destination choice: a case study of the Great East Japan Earthquake

Author

Listed:
  • Giancarlos Troncoso Parady

    (The University of Tokyo)

  • Eiji Hato

    (The University of Tokyo)

Abstract

This article analyzes the tsunami evacuation destination choice process, using as a case study the Great East Japan Earthquake of 2011. The contribution of this article is twofold. First, it sheds some light on the choice mechanism behind tsunami evacuation destination choice, an understudied aspect of the evacuation process. Second, and from a theoretical perspective, it addresses the issue of spatial correlation in discrete choice models. A spatially correlated logit model is estimated, where the allocation parameter is specified as a function of proximity and inter-zone altitude difference to capture more adequately unobserved similarities among alternatives in the specific context of tsunami evacuation.

Suggested Citation

  • Giancarlos Troncoso Parady & Eiji Hato, 2016. "Accounting for spatial correlation in tsunami evacuation destination choice: a case study of the Great East Japan Earthquake," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 84(2), pages 797-807, November.
  • Handle: RePEc:spr:nathaz:v:84:y:2016:i:2:d:10.1007_s11069-016-2457-z
    DOI: 10.1007/s11069-016-2457-z
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11069-016-2457-z
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11069-016-2457-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Michel Bierlaire, 2006. "A theoretical analysis of the cross-nested logit model," Annals of Operations Research, Springer, vol. 144(1), pages 287-300, April.
    2. Wen, Chieh-Hua & Koppelman, Frank S., 2001. "The generalized nested logit model," Transportation Research Part B: Methodological, Elsevier, vol. 35(7), pages 627-641, August.
    3. John C. Whitehead & Bob Edwards & Marieke Van Willigen & John R. Maiolo & Kenneth Wilson & Kevin T. Smith, 2000. "“Heading for Higher Ground: Factors Affecting Real and Hypothetical Hurricane Evacuation Behavior,”," Working Papers 0006, East Carolina University, Department of Economics.
    4. Bekhor, Shlomo & Prashker, Joseph N., 2008. "GEV-based destination choice models that account for unobserved similarities among alternatives," Transportation Research Part B: Methodological, Elsevier, vol. 42(3), pages 243-262, March.
    5. Adam Pel & Michiel Bliemer & Serge Hoogendoorn, 2012. "A review on travel behaviour modelling in dynamic traffic simulation models for evacuations," Transportation, Springer, vol. 39(1), pages 97-123, January.
    6. Bhat, Chandra R. & Guo, Jessica, 2004. "A mixed spatially correlated logit model: formulation and application to residential choice modeling," Transportation Research Part B: Methodological, Elsevier, vol. 38(2), pages 147-168, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Qingyi & Wallace, Stein W., 2022. "Non-compliance in transit-based evacuation pick-up point assignments," Socio-Economic Planning Sciences, Elsevier, vol. 82(PB).
    2. Dingde Xu & Wenfeng Zhou & Xin Deng & Zhixing Ma & Zhuolin Yong & Cheng Qin, 2020. "Information credibility, disaster risk perception and evacuation willingness of rural households in China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 103(3), pages 2865-2882, September.
    3. Junji Urata & Adam J. Pel, 2018. "People's Risk Recognition Preceding Evacuation and Its Role in Demand Modeling and Planning," Risk Analysis, John Wiley & Sons, vol. 38(5), pages 889-905, May.
    4. Simona Mannucci & Federica Rosso & Alessandro D’Amico & Gabriele Bernardini & Michele Morganti, 2022. "Flood Resilience and Adaptation in the Built Environment: How Far along Are We?," Sustainability, MDPI, vol. 14(7), pages 1-22, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tinessa, Fiore & Marzano, Vittorio & Papola, Andrea, 2020. "Mixing distributions of tastes with a Combination of Nested Logit (CoNL) kernel: Formulation and performance analysis," Transportation Research Part B: Methodological, Elsevier, vol. 141(C), pages 1-23.
    2. Vega, Amaya & Reynolds-Feighan, Aisling, 2009. "A methodological framework for the study of residential location and travel-to-work mode choice under central and suburban employment destination patterns," Transportation Research Part A: Policy and Practice, Elsevier, vol. 43(4), pages 401-419, May.
    3. Ibeas, Ángel & Cordera, Ruben & dell’Olio, Luigi & Coppola, Pierluigi, 2013. "Modelling the spatial interactions between workplace and residential location," Transportation Research Part A: Policy and Practice, Elsevier, vol. 49(C), pages 110-122.
    4. Sener, Ipek N. & Pendyala, Ram M. & Bhat, Chandra R., 2011. "Accommodating spatial correlation across choice alternatives in discrete choice models: an application to modeling residential location choice behavior," Journal of Transport Geography, Elsevier, vol. 19(2), pages 294-303.
    5. Yang, Liya & Shen, Qing & Li, Zhibin, 2016. "Comparing travel mode and trip chain choices between holidays and weekdays," Transportation Research Part A: Policy and Practice, Elsevier, vol. 91(C), pages 273-285.
    6. Tinessa, Fiore, 2021. "Closed-form random utility models with mixture distributions of random utilities: Exploring finite mixtures of qGEV models," Transportation Research Part B: Methodological, Elsevier, vol. 146(C), pages 262-288.
    7. Bekhor, Shlomo & Prashker, Joseph N., 2008. "GEV-based destination choice models that account for unobserved similarities among alternatives," Transportation Research Part B: Methodological, Elsevier, vol. 42(3), pages 243-262, March.
    8. Peter Davis & Pasquale Schiraldi, 2014. "The flexible coefficient multinomial logit (FC-MNL) model of demand for differentiated products," RAND Journal of Economics, RAND Corporation, vol. 45(1), pages 32-63, March.
    9. Pereira, Pedro & Ribeiro, Tiago & Vareda, João, 2013. "Delineating markets for bundles with consumer level data: The case of triple-play," International Journal of Industrial Organization, Elsevier, vol. 31(6), pages 760-773.
    10. Ma. Bernadeth B. Lim & Hector R. Lim & Mongkut Piantanakulchai & Francis Aldrine Uy, 2016. "A household-level flood evacuation decision model in Quezon City, Philippines," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 80(3), pages 1539-1561, February.
    11. Laura Grigolon, 2021. "Blurred boundaries: A flexible approach for segmentation applied to the car market," Quantitative Economics, Econometric Society, vol. 12(4), pages 1273-1305, November.
    12. José-Benito Pérez-López & Margarita Novales & Francisco-Alberto Varela-García & Alfonso Orro, 2020. "Residential Location Econometric Choice Modeling with Irregular Zoning: Common Border Spatial Correlation Metric," Networks and Spatial Economics, Springer, vol. 20(3), pages 785-802, September.
    13. Rambha, Tarun & Nozick, Linda K. & Davidson, Rachel, 2021. "Modeling hurricane evacuation behavior using a dynamic discrete choice framework," Transportation Research Part B: Methodological, Elsevier, vol. 150(C), pages 75-100.
    14. Rajeev Kohli & Kamel Jedidi, 2017. "Relation Between EBA and Nested Logit Models," Operations Research, INFORMS, vol. 65(3), pages 621-634, June.
    15. Hongmin Li & Scott Webster, 2017. "Optimal Pricing of Correlated Product Options Under the Paired Combinatorial Logit Model," Operations Research, INFORMS, vol. 65(5), pages 1215-1230, October.
    16. Yao, Jia & Chen, Anthony & Ryu, Seungkyu & Shi, Feng, 2014. "A general unconstrained optimization formulation for the combined distribution and assignment problem," Transportation Research Part B: Methodological, Elsevier, vol. 59(C), pages 137-160.
    17. Abbe, E. & Bierlaire, M. & Toledo, T., 2007. "Normalization and correlation of cross-nested logit models," Transportation Research Part B: Methodological, Elsevier, vol. 41(7), pages 795-808, August.
    18. Ma. Lim & Hector Lim & Mongkut Piantanakulchai & Francis Uy, 2016. "A household-level flood evacuation decision model in Quezon City, Philippines," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 80(3), pages 1539-1561, February.
    19. Robin, Th. & Antonini, G. & Bierlaire, M. & Cruz, J., 2009. "Specification, estimation and validation of a pedestrian walking behavior model," Transportation Research Part B: Methodological, Elsevier, vol. 43(1), pages 36-56, January.
    20. Smirnov, Oleg A. & Egan, Kevin J., 2012. "Spatial random utility model with an application to recreation demand," Economic Modelling, Elsevier, vol. 29(1), pages 72-78.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:84:y:2016:i:2:d:10.1007_s11069-016-2457-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.