IDEAS home Printed from https://ideas.repec.org/a/spr/masfgc/v25y2020i2d10.1007_s11027-019-09856-7.html
   My bibliography  Save this article

Bioenergy with carbon capture and storage: are short-term issues set aside?

Author

Listed:
  • Audrey Laude

    (Université de Reims Champagne-Ardenne)

Abstract

Negative emission technologies (NETs) are a set of technologies that could retrieve greenhouse gases from the atmosphere. NETs could dramatically contribute to maintaining the temperature increase to within the limit of 2 °C or even 1.5 °C. Bioenergy with carbon capture and storage (BECCS) is one of the most studied NETs. BECCS captures carbon dioxide (CO2) emissions coming from a bioenergy plant—e.g., electricity, biofuels, and hydrogen—and stores those emissions in a geologic reservoir, typically a saline aquifer. The purpose of this article is to investigate whether a research community exists on BECCS, and whether it is aligned with research priorities. To do so, a bibliometric analysis is conducted based on author collaborations on BECCS in academic journals between 2001 and 2017. The co-authorship network shows that BECCS research is largely based on the integrated assessment model (IAM) research community. These models analyze how power and transportation systems evolve under a climate constraint in the long run, e.g., until 2100. Such a focus has advantages and drawbacks. On the one hand, it helps to build a common vision of the technology and possible roadmaps. On the other hand, I highlight that the implementation features of BECCS in the near future are insufficiently assessed, e.g., techno-economic analyses, business models, local-scale assessments, and comparison with other NETs. These issues are marginal in the network, whereas long-term analyses are at its core. Future research programmes should better include them to avoid a considerable disappointment about the real potential of BECCS.

Suggested Citation

  • Audrey Laude, 2020. "Bioenergy with carbon capture and storage: are short-term issues set aside?," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 25(2), pages 185-203, February.
  • Handle: RePEc:spr:masfgc:v:25:y:2020:i:2:d:10.1007_s11027-019-09856-7
    DOI: 10.1007/s11027-019-09856-7
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11027-019-09856-7
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11027-019-09856-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hermann Lotze-Campen & Martin Lampe & Page Kyle & Shinichiro Fujimori & Petr Havlik & Hans Meijl & Tomoko Hasegawa & Alexander Popp & Christoph Schmitz & Andrzej Tabeau & Hugo Valin & Dirk Willenbocke, 2014. "Impacts of increased bioenergy demand on global food markets: an AgMIP economic model intercomparison," Agricultural Economics, International Association of Agricultural Economists, vol. 45(1), pages 103-116, January.
    2. Sanjeev Goyal & Marco J. van der Leij & José Luis Moraga-Gonzalez, 2006. "Economics: An Emerging Small World," Journal of Political Economy, University of Chicago Press, vol. 114(2), pages 403-432, April.
    3. Hailey, Anna K. & Meerman, Johannes C. & Larson, Eric D. & Loo, Yueh-Lin, 2016. "Low-carbon “drop-in replacement” transportation fuels from non-food biomass and natural gas," Applied Energy, Elsevier, vol. 183(C), pages 1722-1730.
    4. Sharifzadeh, Mahdi & Wang, Lei & Shah, Nilay, 2015. "Integrated biorefineries: CO2 utilization for maximum biomass conversion," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 151-161.
    5. Uddin, Sk Noim & Barreto, Leonardo, 2007. "Biomass-fired cogeneration systems with CO2 capture and storage," Renewable Energy, Elsevier, vol. 32(6), pages 1006-1019.
    6. Azar, Christian & Lindgren, Kristian & Andersson, Bjorn A., 2003. "Global energy scenarios meeting stringent CO2 constraints--cost-effective fuel choices in the transportation sector," Energy Policy, Elsevier, vol. 31(10), pages 961-976, August.
    7. Andre Faaij, 2006. "Modern Biomass Conversion Technologies," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 11(2), pages 335-367, March.
    8. Guy Lomax & Timothy M. Lenton & Adepeju Adeosun & Mark Workman, 2015. "Investing in negative emissions," Nature Climate Change, Nature, vol. 5(6), pages 498-500, June.
    9. Elmar Kriegler & John Weyant & Geoffrey Blanford & Volker Krey & Leon Clarke & Jae Edmonds & Allen Fawcett & Gunnar Luderer & Keywan Riahi & Richard Richels & Steven Rose & Massimo Tavoni & Detlef Vuu, 2014. "The role of technology for achieving climate policy objectives: overview of the EMF 27 study on global technology and climate policy strategies," Climatic Change, Springer, vol. 123(3), pages 353-367, April.
    10. Sithole, H. & Cockerill, T.T. & Hughes, K.J. & Ingham, D.B. & Ma, L. & Porter, R.T.J. & Pourkashanian, M., 2016. "Developing an optimal electricity generation mix for the UK 2050 future," Energy, Elsevier, vol. 100(C), pages 363-373.
    11. Elmar Kriegler & Ioanna Mouratiadou & Gunnar Luderer & Jae Edmonds & Ottmar Edenhofer, 2016. "Introduction to the RoSE special issue on the impact of economic growth and fossil fuel availability on climate protection," Climatic Change, Springer, vol. 136(1), pages 1-6, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Audrey Laude, 2020. "Bioenergy with carbon capture and storage: are short-term issues set aside?," Post-Print hal-02163610, HAL.
    2. P. A. Turner & C. B. Field & D. B. Lobell & D. L. Sanchez & K. J. Mach, 2018. "Unprecedented rates of land-use transformation in modelled climate change mitigation pathways," Nature Sustainability, Nature, vol. 1(5), pages 240-245, May.
    3. Carl-Friedrich Schleussner & Joeri Rogelj & Michiel Schaeffer & Tabea Lissner & Rachel Licker & Erich M. Fischer & Reto Knutti & Anders Levermann & Katja Frieler & William Hare, 2016. "Science and policy characteristics of the Paris Agreement temperature goal," Nature Climate Change, Nature, vol. 6(9), pages 827-835, September.
    4. Schmidt, Johannes & Leduc, Sylvain & Dotzauer, Erik & Schmid, Erwin, 2011. "Cost-effective policy instruments for greenhouse gas emission reduction and fossil fuel substitution through bioenergy production in Austria," Energy Policy, Elsevier, vol. 39(6), pages 3261-3280, June.
    5. Schmidt, Johannes & Leduc, Sylvain & Dotzauer, Erik & Kindermann, Georg & Schmid, Erwin, 2010. "Cost-effective CO2 emission reduction through heat, power and biofuel production from woody biomass: A spatially explicit comparison of conversion technologies," Applied Energy, Elsevier, vol. 87(7), pages 2128-2141, July.
    6. Åhman, Max, 2010. "Biomethane in the transport sector--An appraisal of the forgotten option," Energy Policy, Elsevier, vol. 38(1), pages 208-217, January.
    7. Jérôme Hilaire & Jan C. Minx & Max W. Callaghan & Jae Edmonds & Gunnar Luderer & Gregory F. Nemet & Joeri Rogelj & Maria Mar Zamora, 2019. "Negative emissions and international climate goals—learning from and about mitigation scenarios," Climatic Change, Springer, vol. 157(2), pages 189-219, November.
    8. Takeshita, Takayuki & Yamaji, Kenji, 2008. "Important roles of Fischer-Tropsch synfuels in the global energy future," Energy Policy, Elsevier, vol. 36(8), pages 2791-2802, August.
    9. Vassilis Daioglou & Steven K. Rose & Nico Bauer & Alban Kitous & Matteo Muratori & Fuminori Sano & Shinichiro Fujimori & Matthew J. Gidden & Etsushi Kato & Kimon Keramidas & David Klein & Florian Lebl, 2020. "Bioenergy technologies in long-run climate change mitigation: results from the EMF-33 study," Climatic Change, Springer, vol. 163(3), pages 1603-1620, December.
    10. Gunnar Luderer & Zoi Vrontisi & Christoph Bertram & Oreane Y. Edelenbosch & Robert C. Pietzcker & Joeri Rogelj & Harmen Sytze Boer & Laurent Drouet & Johannes Emmerling & Oliver Fricko & Shinichiro Fu, 2018. "Residual fossil CO2 emissions in 1.5–2 °C pathways," Nature Climate Change, Nature, vol. 8(7), pages 626-633, July.
    11. Börjesson, Martin & Ahlgren, Erik O., 2010. "Biomass gasification in cost-optimized district heating systems--A regional modelling analysis," Energy Policy, Elsevier, vol. 38(1), pages 168-180, January.
    12. Fankhauser, Samuel & Jotzo, Frank, 2017. "Economic growth and development with low-carbon energy," LSE Research Online Documents on Economics 86850, London School of Economics and Political Science, LSE Library.
    13. Katharina Rath & Klaus Wohlrabe, 2016. "Recent trends in co-authorship in economics: evidence from RePEc," Applied Economics Letters, Taylor & Francis Journals, vol. 23(12), pages 897-902, August.
    14. Lorenzo Ductor & Sanjeev Goyal & Anja Prummer, 2018. "Gender & Collaboration," Working Papers 856, Queen Mary University of London, School of Economics and Finance.
    15. Cilem Selin Hazir & Corinne Autant-Bernard, 2012. "Using Affiliation Networks to Study the Determinants of Multilateral Research Cooperation Some empirical evidence from EU Framework Programs in biotechnology," Working Papers 1212, Groupe d'Analyse et de Théorie Economique Lyon St-Étienne (GATE Lyon St-Étienne), Université de Lyon.
    16. Son Kim & Kenichi Wada & Atsushi Kurosawa & Matthew Roberts, 2014. "Nuclear energy response in the EMF27 study," Climatic Change, Springer, vol. 123(3), pages 443-460, April.
    17. Md. Mosaraf Hossain Khan & Amran Hossain & Aasim Ullah & Molla Shahadat Hossain Lipu & S. M. Shahnewaz Siddiquee & M. Shafiul Alam & Taskin Jamal & Hafiz Ahmed, 2021. "Integration of Large-Scale Electric Vehicles into Utility Grid: An Efficient Approach for Impact Analysis and Power Quality Assessment," Sustainability, MDPI, vol. 13(19), pages 1-18, October.
    18. Carillo, Maria Rosaria & Papagni, Erasmo & Sapio, Alessandro, 2013. "Do collaborations enhance the high-quality output of scientific institutions? Evidence from the Italian Research Assessment Exercise," Journal of Behavioral and Experimental Economics (formerly The Journal of Socio-Economics), Elsevier, vol. 47(C), pages 25-36.
    19. Koltsaklis, Nikolaos E. & Nazos, Konstantinos, 2017. "A stochastic MILP energy planning model incorporating power market dynamics," Applied Energy, Elsevier, vol. 205(C), pages 1364-1383.
    20. van der Zwaan, Bob & Kober, Tom & Calderon, Silvia & Clarke, Leon & Daenzer, Katie & Kitous, Alban & Labriet, Maryse & Lucena, André F.P. & Octaviano, Claudia & Di Sbroiavacca, Nicolas, 2016. "Energy technology roll-out for climate change mitigation: A multi-model study for Latin America," Energy Economics, Elsevier, vol. 56(C), pages 526-542.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:masfgc:v:25:y:2020:i:2:d:10.1007_s11027-019-09856-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.