IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v39y2011i6p3261-3280.html
   My bibliography  Save this article

Cost-effective policy instruments for greenhouse gas emission reduction and fossil fuel substitution through bioenergy production in Austria

Author

Listed:
  • Schmidt, Johannes
  • Leduc, Sylvain
  • Dotzauer, Erik
  • Schmid, Erwin

Abstract

Climate change mitigation and security of energy supply are important targets of Austrian energy policy. Bioenergy production based on resources from agriculture and forestry is an important option for attaining these targets. To increase the share of bioenergy in the energy supply, supporting policy instruments are necessary. The cost-effectiveness of these instruments in attaining policy targets depends on the availability of bioenergy technologies. Advanced technologies such as second-generation biofuels, biomass gasification for power production, and bioenergy with carbon capture and storage (BECCS) will likely change the performance of policy instruments. This article assesses the cost-effectiveness of energy policy instruments, considering new bioenergy technologies for the year 2030, with respect to greenhouse gas emission (GHG) reduction and fossil fuel substitution. Instruments that directly subsidize bioenergy are compared with instruments that aim at reducing GHG emissions. A spatially explicit modeling approach is used to account for biomass supply and energy distribution costs in Austria. Results indicate that a carbon tax performs cost-effectively with respect to both policy targets if BECCS is not available. However, the availability of BECCS creates a trade-off between GHG emission reduction and fossil fuel substitution. Biofuel blending obligations are costly in terms of attaining the policy targets.

Suggested Citation

  • Schmidt, Johannes & Leduc, Sylvain & Dotzauer, Erik & Schmid, Erwin, 2011. "Cost-effective policy instruments for greenhouse gas emission reduction and fossil fuel substitution through bioenergy production in Austria," Energy Policy, Elsevier, vol. 39(6), pages 3261-3280, June.
  • Handle: RePEc:eee:enepol:v:39:y:2011:i:6:p:3261-3280
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301421511001984
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Bertrand Magne, Socrates Kypreos, and Hal Turton, 2010. "Technology Options for Low Stabilization Pathways with MERGE," The Energy Journal, International Association for Energy Economics, vol. 0(Special I).
    2. Tzimas, Evangelos & Georgakaki, Aliki, 2010. "A long-term view of fossil-fuelled power generation in Europe," Energy Policy, Elsevier, vol. 38(8), pages 4252-4264, August.
    3. Bob van der Zwaan & Reyer Gerlagh, 2008. "The Economics of Geological CO2 Storage and Leakage," Working Papers 2008.10, Fondazione Eni Enrico Mattei.
    4. König, Andreas, 2011. "Cost efficient utilisation of biomass in the German energy system in the context of energy and environmental policies," Energy Policy, Elsevier, vol. 39(2), pages 628-636, February.
    5. Pope, Jeff & Owen, Anthony D., 2009. "Emission trading schemes: potential revenue effects, compliance costs and overall tax policy issues," Energy Policy, Elsevier, vol. 37(11), pages 4595-4603, November.
    6. Sørensen Torekov, Mikkel & Bahnsen, Niels & Qvale, Bjørn, 2007. "The relative competitive positions of the alternative means for domestic heating," Energy, Elsevier, vol. 32(5), pages 627-633.
    7. Uddin, Sk Noim & Barreto, Leonardo, 2007. "Biomass-fired cogeneration systems with CO2 capture and storage," Renewable Energy, Elsevier, vol. 32(6), pages 1006-1019.
    8. Azar, Christian & Lindgren, Kristian & Andersson, Bjorn A., 2003. "Global energy scenarios meeting stringent CO2 constraints--cost-effective fuel choices in the transportation sector," Energy Policy, Elsevier, vol. 31(10), pages 961-976, August.
    9. Andre Faaij, 2006. "Modern Biomass Conversion Technologies," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 11(2), pages 335-367, March.
    10. Sanden, Bjorn A. & Azar, Christian, 2005. "Near-term technology policies for long-term climate targets--economy wide versus technology specific approaches," Energy Policy, Elsevier, vol. 33(12), pages 1557-1576, August.
    11. Delzeit, R. & Holm-Müller, K., 2009. "Steps to discern sustainability criteria for a certification scheme of bioethanol in Brazil: Approach and difficulties," Energy, Elsevier, vol. 34(5), pages 662-668.
    12. Sues, Anna & Juraščík, Martin & Ptasinski, Krzysztof, 2010. "Exergetic evaluation of 5 biowastes-to-biofuels routes via gasification," Energy, Elsevier, vol. 35(2), pages 996-1007.
    13. Karl Steininger & Herbert Voraberger, 2003. "Exploiting the Medium Term Biomass Energy Potentials in Austria: A Comparison of Costs and Macroeconomic Impact," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 24(4), pages 359-377, April.
    14. Bram, S. & De Ruyck, J. & Lavric, D., 2009. "Using biomass: A system perturbation analysis," Applied Energy, Elsevier, vol. 86(2), pages 194-201, February.
    15. Marbe, Å & Harvey, S & Berntsson, T, 2004. "Biofuel gasification combined heat and power—new implementation opportunities resulting from combined supply of process steam and district heating," Energy, Elsevier, vol. 29(8), pages 1117-1137.
    16. Leduc, S. & Starfelt, F. & Dotzauer, E. & Kindermann, G. & McCallum, I. & Obersteiner, M. & Lundgren, J., 2010. "Optimal location of lignocellulosic ethanol refineries with polygeneration in Sweden," Energy, Elsevier, vol. 35(6), pages 2709-2716.
    17. Möllersten, Kenneth & Gao, Lin & Yan, Jinyue & Obersteiner, Michael, 2004. "Efficient energy systems with CO2 capture and storage from renewable biomass in pulp and paper mills," Renewable Energy, Elsevier, vol. 29(9), pages 1583-1598.
    18. Eriksson, Ljusk Ola & Bjorheden, Rolf, 1989. "Optimal storing, transport and processing for a forest-fuel supplier," European Journal of Operational Research, Elsevier, vol. 43(1), pages 26-33, November.
    19. Searchinger, Timothy & Heimlich, Ralph & Houghton, R. A. & Dong, Fengxia & Elobeid, Amani & Fabiosa, Jacinto F. & Tokgoz, Simla & Hayes, Dermot J. & Yu, Hun-Hsiang, 2008. "Use of U.S. Croplands for Biofuels Increases Greenhouse Gases Through Emissions from Land-Use Change," Staff General Research Papers Archive 12881, Iowa State University, Department of Economics.
    20. Cerqueira Leite, Rogério Cezar de & Verde Leal, Manoel Regis Lima & Barbosa Cortez, Luís Augusto & Griffin, W. Michael & Gaya Scandiffio, Mirna Ivonne, 2009. "Can Brazil replace 5% of the 2025 gasoline world demand with ethanol?," Energy, Elsevier, vol. 34(5), pages 655-661.
    21. Grohnheit, Poul Erik & Gram Mortensen, Bent Ole, 2003. "Competition in the market for space heating. District heating as the infrastructure for competition among fuels and technologies," Energy Policy, Elsevier, vol. 31(9), pages 817-826, July.
    22. -, 2009. "The economics of climate change," Sede Subregional de la CEPAL para el Caribe (Estudios e Investigaciones) 38679, Naciones Unidas Comisión Económica para América Latina y el Caribe (CEPAL).
    23. Schmidt, Johannes & Leduc, Sylvain & Dotzauer, Erik & Kindermann, Georg & Schmid, Erwin, 2010. "Cost-effective CO2 emission reduction through heat, power and biofuel production from woody biomass: A spatially explicit comparison of conversion technologies," Applied Energy, Elsevier, vol. 87(7), pages 2128-2141, July.
    24. Marc S. Paoletta & Luca Taschini, 2006. "An Econometric Analysis of Emission Trading Allowances," Swiss Finance Institute Research Paper Series 06-26, Swiss Finance Institute.
    25. Berndes, Goran & Hansson, Julia, 2007. "Bioenergy expansion in the EU: Cost-effective climate change mitigation, employment creation and reduced dependency on imported fuels," Energy Policy, Elsevier, vol. 35(12), pages 5965-5979, December.
    26. D. Bonijoly & A. Fabbri & F. Chapuis & Audrey Laude & O. Ricci & Hugues Bauer & S. Grataloup & X. Galiègue, 2009. "Technical and economic feasibility of the capture and geological storage of CO2 from a bio-fuel distillery: CPER Artenay project," Post-Print hal-02163814, HAL.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Schmidt, Johannes & Leduc, Sylvain & Dotzauer, Erik & Kindermann, Georg & Schmid, Erwin, 2010. "Cost-effective CO2 emission reduction through heat, power and biofuel production from woody biomass: A spatially explicit comparison of conversion technologies," Applied Energy, Elsevier, vol. 87(7), pages 2128-2141, July.
    2. Mesfun, Sennai & Sanchez, Daniel L. & Leduc, Sylvain & Wetterlund, Elisabeth & Lundgren, Joakim & Biberacher, Markus & Kraxner, Florian, 2017. "Power-to-gas and power-to-liquid for managing renewable electricity intermittency in the Alpine Region," Renewable Energy, Elsevier, vol. 107(C), pages 361-372.
    3. Derek Lemoine & Sabine Fuss & Jana Szolgayova & Michael Obersteiner & Daniel Kammen, 2012. "The influence of negative emission technologies and technology policies on the optimal climate mitigation portfolio," Climatic Change, Springer, vol. 113(2), pages 141-162, July.
    4. Shabani, Nazanin & Akhtari, Shaghaygh & Sowlati, Taraneh, 2013. "Value chain optimization of forest biomass for bioenergy production: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 23(C), pages 299-311.
    5. Johannes Schmidt & Sylvain Leduc & Erik Dotzauer & Georg Kindermann & Erwin Schmid, 2009. "Using Monte Carlo Simulation to Account for Uncertainties in the Spatial Explicit Modeling of Biomass Fired Combined Heat and Power Potentials in Austria," Working Papers 432009, University of Natural Resources and Life Sciences, Vienna, Department of Economics and Social Sciences, Institute for Sustainable Economic Development.
    6. Börjesson, Martin & Ahlgren, Erik O., 2010. "Biomass gasification in cost-optimized district heating systems--A regional modelling analysis," Energy Policy, Elsevier, vol. 38(1), pages 168-180, January.
    7. repec:zbw:inwedp:432009 is not listed on IDEAS
    8. Schmidt, Johannes & Leduc, Sylvain & Dotzauer, Erik & Kindermann, Georg & Schmid, Erwin, 2009. "Using Monte Carlo Simulation to Account for Uncertainties in the Spatial Explicit Modeling of Biomass Fired Combined Heat and Power Potentials in Austria," Discussion Papers DP-43-2009, University of Natural Resources and Life Sciences, Vienna, Department of Economics and Social Sciences, Institute for Sustainable Economic Development.
    9. Audrey Laude, 2020. "Bioenergy with carbon capture and storage: are short-term issues set aside?," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 25(2), pages 185-203, February.
    10. Audrey Laude, 2020. "Bioenergy with carbon capture and storage: are short-term issues set aside?," Post-Print hal-02163610, HAL.
    11. Wetterlund, Elisabeth & Leduc, Sylvain & Dotzauer, Erik & Kindermann, Georg, 2012. "Optimal localisation of biofuel production on a European scale," Energy, Elsevier, vol. 41(1), pages 462-472.
    12. Bosetti, Valentina & Carraro, Carlo & Duval, Romain & Tavoni, Massimo, 2011. "What should we expect from innovation? A model-based assessment of the environmental and mitigation cost implications of climate-related R&D," Energy Economics, Elsevier, vol. 33(6), pages 1313-1320.
    13. Ba, Birome Holo & Prins, Christian & Prodhon, Caroline, 2016. "Models for optimization and performance evaluation of biomass supply chains: An Operations Research perspective," Renewable Energy, Elsevier, vol. 87(P2), pages 977-989.
    14. Hellsmark, Hans & Jacobsson, Staffan, 2012. "Realising the potential of gasified biomass in the European Union—Policy challenges in moving from demonstration plants to a larger scale diffusion," Energy Policy, Elsevier, vol. 41(C), pages 507-518.
    15. Vogt-Schilb, Adrien & Hallegatte, Stephane & de Gouvello Christophe, 2014. "Long-term mitigation strategies and marginal abatement cost curves : a case study on Brazil," Policy Research Working Paper Series 6808, The World Bank.
    16. Venmans, Frank, 2012. "A literature-based multi-criteria evaluation of the EU ETS," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(8), pages 5493-5510.
    17. Adrien Vogt-Schilb & St�phane Hallegatte & Christophe de Gouvello, 2015. "Marginal abatement cost curves and the quality of emission reductions: a case study on Brazil," Climate Policy, Taylor & Francis Journals, vol. 15(6), pages 703-723, November.
    18. Charlie Wilson & Arnulf Grubler, 2011. "Lessons from the history of technological change for clean energy scenarios and policies," Natural Resources Forum, Blackwell Publishing, vol. 35(3), pages 165-184, August.
    19. Bob van der Zwaan & Reyer Gerlagh, 2016. "Offshore CCS and ocean acidification: a global long-term probabilistic cost-benefit analysis of climate change mitigation," Climatic Change, Springer, vol. 137(1), pages 157-170, July.
    20. Sievers, Luisa & Schaffer, Axel, 2016. "The impacts of the German biofuel quota on sectoral domestic production and imports of the German economy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 63(C), pages 497-505.
    21. Maghanki, Maryam Mohammadi & Ghobadian, Barat & Najafi, Gholamhassan & Galogah, Reza Janzadeh, 2013. "Micro combined heat and power (MCHP) technologies and applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 510-524.

    More about this item

    Keywords

    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:39:y:2011:i:6:p:3261-3280. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.