IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v29y2004i8p1117-1137.html
   My bibliography  Save this article

Biofuel gasification combined heat and power—new implementation opportunities resulting from combined supply of process steam and district heating

Author

Listed:
  • Marbe, Å
  • Harvey, S
  • Berntsson, T

Abstract

The economics of biofuel combined heat and power (CHP) depend on many technical, economic and political factors. The goal of this study is to investigate how combined supply of process steam and district heating can improve profitability of biofuelled CHP plant investments in small to medium-sized applications. Focus is placed on advanced biofuel gasification combined cycle technologies with high electric power production potential, compared to conventional steam turbine technology. The study assesses biofuel CHP options in a Swedish municipality that includes both an industrial process steam consumer and a district heating network. The results show the clear economic advantage of this type of co-operation. Under the assumed conditions for the study, an optimally sized conventional steam turbine CHP unit achieves the lowest cost of electricity. However, gasification-based CHP technologies generate significantly more electricity than conventional steam cycle technology, which results in higher net CHP plant revenue for a pressurised gasification CHP plant.

Suggested Citation

  • Marbe, Å & Harvey, S & Berntsson, T, 2004. "Biofuel gasification combined heat and power—new implementation opportunities resulting from combined supply of process steam and district heating," Energy, Elsevier, vol. 29(8), pages 1117-1137.
  • Handle: RePEc:eee:energy:v:29:y:2004:i:8:p:1117-1137
    DOI: 10.1016/j.energy.2004.01.005
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544204000167
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2004.01.005?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Schmidt, Johannes & Leduc, Sylvain & Dotzauer, Erik & Kindermann, Georg & Schmid, Erwin, 2009. "Using Monte Carlo Simulation to Account for Uncertainties in the Spatial Explicit Modeling of Biomass Fired Combined Heat and Power Potentials in Austria," Discussion Papers DP-43-2009, University of Natural Resources and Life Sciences, Vienna, Department of Economics and Social Sciences, Institute for Sustainable Economic Development.
    2. Sathre, Roger & Gustavsson, Leif & Truong, Nguyen Le, 2017. "Climate effects of electricity production fuelled by coal, forest slash and municipal solid waste with and without carbon capture," Energy, Elsevier, vol. 122(C), pages 711-723.
    3. repec:zbw:inwedp:432009 is not listed on IDEAS
    4. Schmidt, Johannes & Leduc, Sylvain & Dotzauer, Erik & Schmid, Erwin, 2011. "Cost-effective policy instruments for greenhouse gas emission reduction and fossil fuel substitution through bioenergy production in Austria," Energy Policy, Elsevier, vol. 39(6), pages 3261-3280, June.
    5. Difs, Kristina & Danestig, Maria & Trygg, Louise, 2009. "Increased use of district heating in industrial processes - Impacts on heat load duration," Applied Energy, Elsevier, vol. 86(11), pages 2327-2334, November.
    6. Zglobisz, Natalia & Castillo-Castillo, Arturo & Grimes, Sue & Jones, Peter, 2010. "Influence of UK energy policy on the deployment of anaerobic digestion," Energy Policy, Elsevier, vol. 38(10), pages 5988-5999, October.
    7. Li, Xian & Shen, Ye & Kan, Xiang & Hardiman, Timothy Kurnia & Dai, Yanjun & Wang, Chi-Hwa, 2018. "Thermodynamic assessment of a solar/autothermal hybrid gasification CCHP system with an indirectly radiative reactor," Energy, Elsevier, vol. 142(C), pages 201-214.
    8. Amiri, Shahnaz & Weinberger, Gottfried, 2018. "Increased cogeneration of renewable electricity through energy cooperation in a Swedish district heating system - A case study," Renewable Energy, Elsevier, vol. 116(PA), pages 866-877.
    9. Wetterlund, Elisabeth & Pettersson, Karin & Harvey, Simon, 2011. "Systems analysis of integrating biomass gasification with pulp and paper production – Effects on economic performance, CO2 emissions and energy use," Energy, Elsevier, vol. 36(2), pages 932-941.
    10. Cleary, Julian & Wolf, Derek P. & Caspersen, John P., 2015. "Comparing the life cycle costs of using harvest residue as feedstock for small- and large-scale bioenergy systems (part II)," Energy, Elsevier, vol. 86(C), pages 539-547.
    11. Wetterlund, Elisabeth & Söderström, Mats, 2010. "Biomass gasification in district heating systems - The effect of economic energy policies," Applied Energy, Elsevier, vol. 87(9), pages 2914-2922, September.
    12. Marbe, Asa & Harvey, Simon, 2006. "Opportunities for integration of biofuel gasifiers in natural-gas combined heat-and-power plants in district-heating systems," Applied Energy, Elsevier, vol. 83(7), pages 723-748, July.
    13. Weinberger, Gottfried & Amiri, Shahnaz & Moshfegh, Bahram, 2017. "On the benefit of integration of a district heating system with industrial excess heat: An economic and environmental analysis," Applied Energy, Elsevier, vol. 191(C), pages 454-468.
    14. Mesfun, Sennai & Sanchez, Daniel L. & Leduc, Sylvain & Wetterlund, Elisabeth & Lundgren, Joakim & Biberacher, Markus & Kraxner, Florian, 2017. "Power-to-gas and power-to-liquid for managing renewable electricity intermittency in the Alpine Region," Renewable Energy, Elsevier, vol. 107(C), pages 361-372.
    15. Johannes Schmidt & Sylvain Leduc & Erik Dotzauer & Georg Kindermann & Erwin Schmid, 2009. "Using Monte Carlo Simulation to Account for Uncertainties in the Spatial Explicit Modeling of Biomass Fired Combined Heat and Power Potentials in Austria," Working Papers 432009, University of Natural Resources and Life Sciences, Vienna, Department of Economics and Social Sciences, Institute for Sustainable Economic Development.
    16. Schmidt, Johannes & Leduc, Sylvain & Dotzauer, Erik & Kindermann, Georg & Schmid, Erwin, 2010. "Cost-effective CO2 emission reduction through heat, power and biofuel production from woody biomass: A spatially explicit comparison of conversion technologies," Applied Energy, Elsevier, vol. 87(7), pages 2128-2141, July.
    17. Gustavsson, Leif & Truong, Nguyen Le, 2011. "Coproduction of district heat and electricity or biomotor fuels," Energy, Elsevier, vol. 36(10), pages 6263-6277.
    18. Jönsson, Johanna & Svensson, Inger-Lise & Berntsson, Thore & Moshfegh, Bahram, 2008. "Excess heat from kraft pulp mills: Trade-offs between internal and external use in the case of Sweden--Part 2: Results for future energy market scenarios," Energy Policy, Elsevier, vol. 36(11), pages 4186-4197, November.
    19. Börjesson, Martin & Ahlgren, Erik O., 2010. "Biomass gasification in cost-optimized district heating systems--A regional modelling analysis," Energy Policy, Elsevier, vol. 38(1), pages 168-180, January.
    20. Börjesson Hagberg, Martin & Pettersson, Karin & Ahlgren, Erik O., 2016. "Bioenergy futures in Sweden – Modeling integration scenarios for biofuel production," Energy, Elsevier, vol. 109(C), pages 1026-1039.
    21. Wang, Jiang-Jiang & Xu, Zi-Long & Jin, Hong-Guang & Shi, Guo-hua & Fu, Chao & Yang, Kun, 2014. "Design optimization and analysis of a biomass gasification based BCHP system: A case study in Harbin, China," Renewable Energy, Elsevier, vol. 71(C), pages 572-583.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:29:y:2004:i:8:p:1117-1137. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.