IDEAS home Printed from https://ideas.repec.org/a/spr/jglopt/v71y2018i4d10.1007_s10898-018-0643-0.html
   My bibliography  Save this article

Optimization of black-box problems using Smolyak grids and polynomial approximations

Author

Listed:
  • Chris A. Kieslich

    (Georgia Institute of Technology)

  • Fani Boukouvala

    (Georgia Institute of Technology)

  • Christodoulos A. Floudas

    (Texas A&M University
    Texas A&M University)

Abstract

A surrogate-based optimization method is presented, which aims to locate the global optimum of box-constrained problems using input–output data. The method starts with a global search of the n-dimensional space, using a Smolyak (Sparse) grid which is constructed using Chebyshev extrema in the one-dimensional space. The collected samples are used to fit polynomial interpolants, which are used as surrogates towards the search for the global optimum. The proposed algorithm adaptively refines the grid by collecting new points in promising regions, and iteratively refines the search space around the incumbent sample until the search domain reaches a minimum hyper-volume and convergence has been attained. The algorithm is tested on a large set of benchmark problems with up to thirty dimensions and its performance is compared to a recent algorithm for global optimization of grey-box problems using quadratic, kriging and radial basis functions. It is shown that the proposed algorithm has a consistently reliable performance for the vast majority of test problems, and this is attributed to the use of Chebyshev-based Sparse Grids and polynomial interpolants, which have not gained significant attention in surrogate-based optimization thus far.

Suggested Citation

  • Chris A. Kieslich & Fani Boukouvala & Christodoulos A. Floudas, 2018. "Optimization of black-box problems using Smolyak grids and polynomial approximations," Journal of Global Optimization, Springer, vol. 71(4), pages 845-869, August.
  • Handle: RePEc:spr:jglopt:v:71:y:2018:i:4:d:10.1007_s10898-018-0643-0
    DOI: 10.1007/s10898-018-0643-0
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10898-018-0643-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10898-018-0643-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Rommel Regis & Christine Shoemaker, 2013. "A quasi-multistart framework for global optimization of expensive functions using response surface models," Journal of Global Optimization, Springer, vol. 56(4), pages 1719-1753, August.
    2. Judd, Kenneth L. & Maliar, Lilia & Maliar, Serguei & Valero, Rafael, 2014. "Smolyak method for solving dynamic economic models: Lagrange interpolation, anisotropic grid and adaptive domain," Journal of Economic Dynamics and Control, Elsevier, vol. 44(C), pages 92-123.
    3. H. Le Thi & A. Vaz & L. Vicente, 2012. "Optimizing radial basis functions by d.c. programming and its use in direct search for global derivative-free optimization," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 20(1), pages 190-214, April.
    4. Boukouvala, Fani & Misener, Ruth & Floudas, Christodoulos A., 2016. "Global optimization advances in Mixed-Integer Nonlinear Programming, MINLP, and Constrained Derivative-Free Optimization, CDFO," European Journal of Operational Research, Elsevier, vol. 252(3), pages 701-727.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Boukouvala, Fani & Misener, Ruth & Floudas, Christodoulos A., 2016. "Global optimization advances in Mixed-Integer Nonlinear Programming, MINLP, and Constrained Derivative-Free Optimization, CDFO," European Journal of Operational Research, Elsevier, vol. 252(3), pages 701-727.
    2. S. Bogan Aruoba & Pablo Cuba-Borda & Kenji Higa-Flores & Frank Schorfheide & Sergio Villalvazo, 2021. "Piecewise-Linear Approximations and Filtering for DSGE Models with Occasionally Binding Constraints," Review of Economic Dynamics, Elsevier for the Society for Economic Dynamics, vol. 41, pages 96-120, July.
    3. Li, Xin & Pan, Yanchun & Jiang, Shiqiang & Huang, Qiang & Chen, Zhimin & Zhang, Mingxia & Zhang, Zuoyao, 2021. "Locate vaccination stations considering travel distance, operational cost, and work schedule," Omega, Elsevier, vol. 101(C).
    4. Kristensen, Dennis & Mogensen, Patrick K. & Moon, Jong Myun & Schjerning, Bertel, 2021. "Solving dynamic discrete choice models using smoothing and sieve methods," Journal of Econometrics, Elsevier, vol. 223(2), pages 328-360.
    5. Krishnamurthy, Arvind & Li, Wenhao, 2020. "Dissecting Mechanisms of Financial Crises: Intermediation and Sentiment," Research Papers 3874, Stanford University, Graduate School of Business.
    6. Rongju Zhang & Nicolas Langren'e & Yu Tian & Zili Zhu & Fima Klebaner & Kais Hamza, 2018. "Local Control Regression: Improving the Least Squares Monte Carlo Method for Portfolio Optimization," Papers 1803.11467, arXiv.org, revised Sep 2018.
    7. Gary S. Anderson, 2018. "Reliably Computing Nonlinear Dynamic Stochastic Model Solutions: An Algorithm with Error Formulas," Finance and Economics Discussion Series 2018-070, Board of Governors of the Federal Reserve System (U.S.).
    8. Zhang, Xue & Poeschl, Johannes, 2017. "Bank Capital Regulation in a Model of Modern Banking Crises," VfS Annual Conference 2017 (Vienna): Alternative Structures for Money and Banking 168275, Verein für Socialpolitik / German Economic Association.
    9. Campos, Juan S. & Misener, Ruth & Parpas, Panos, 2019. "A multilevel analysis of the Lasserre hierarchy," European Journal of Operational Research, Elsevier, vol. 277(1), pages 32-41.
    10. Chan, Chi Kin & Fang, Fei & Langevin, André, 2018. "Single-vendor multi-buyer supply chain coordination with stochastic demand," International Journal of Production Economics, Elsevier, vol. 206(C), pages 110-133.
    11. Hull, Isaiah & Sattath, Or & Diamanti, Eleni & Wendin, Göran, 2020. "Quantum Technology for Economists," Working Paper Series 398, Sveriges Riksbank (Central Bank of Sweden).
    12. Zheng, Xuyue & Wu, Guoce & Qiu, Yuwei & Zhan, Xiangyan & Shah, Nilay & Li, Ning & Zhao, Yingru, 2018. "A MINLP multi-objective optimization model for operational planning of a case study CCHP system in urban China," Applied Energy, Elsevier, vol. 210(C), pages 1126-1140.
    13. Daniel Fehrle & Christopher Heiberger, 2020. "The return on everything and the business cycle in production economies," Working Papers 193, Bavarian Graduate Program in Economics (BGPE).
    14. Serguei Maliar & John Taylor & Lilia Maliar, 2016. "The Impact of Alternative Transitions to Normalized Monetary Policy," 2016 Meeting Papers 794, Society for Economic Dynamics.
    15. Andreas Fagereng & Charles Gottlieb & Luigi Guiso, 2017. "Asset Market Participation and Portfolio Choice over the Life-Cycle," Journal of Finance, American Finance Association, vol. 72(2), pages 705-750, April.
    16. Yasuo Hirose & Takeki Sunakawa, 2023. "The Natural Rate of Interest in a Non-linear DSGE Model," International Journal of Central Banking, International Journal of Central Banking, vol. 19(1), pages 301-340, March.
    17. FUKASAWA Takeshi & OHASHI Hiroshi, 2023. "Long-run Effect of a Horizontal Merger and Its Remedial Standards," Discussion papers 23001, Research Institute of Economy, Trade and Industry (RIETI).
    18. Yongyang Cai & Kenneth L. Judd, 2023. "A simple but powerful simulated certainty equivalent approximation method for dynamic stochastic problems," Quantitative Economics, Econometric Society, vol. 14(2), pages 651-687, May.
    19. David E. Bernal & Zedong Peng & Jan Kronqvist & Ignacio E. Grossmann, 2022. "Alternative regularizations for Outer-Approximation algorithms for convex MINLP," Journal of Global Optimization, Springer, vol. 84(4), pages 807-842, December.
    20. Frauke Liers & Alexander Martin & Maximilian Merkert & Nick Mertens & Dennis Michaels, 2021. "Solving mixed-integer nonlinear optimization problems using simultaneous convexification: a case study for gas networks," Journal of Global Optimization, Springer, vol. 80(2), pages 307-340, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jglopt:v:71:y:2018:i:4:d:10.1007_s10898-018-0643-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.