IDEAS home Printed from https://ideas.repec.org/a/spr/jbecon/v92y2022i7d10.1007_s11573-022-01090-z.html
   My bibliography  Save this article

Workforce planning in production with flexible or budgeted employee training and volatile demand

Author

Listed:
  • Patricia Heuser

    (RWTH Aachen University - Chair of Management Accounting)

  • Peter Letmathe

    (RWTH Aachen University - Chair of Management Accounting)

  • Matthias Schinner

    (RWTH Aachen University - Chair of Management Accounting)

Abstract

Companies have to adapt their product portfolio to rapidly changing markets and high demand volatility. As a result, they need to invest in workforce learning and training measures to gain flexibility. Especially during ramp-up phases employees have to adjust their skill set to new production requirements. While traditional employee training models focus on a condensed period of training at the beginning of a production ramp-up, we aim to shed light on the effectiveness of more flexible concepts of training with a general availability of training measures during a product’s life cycle. We budget training in two dimensions, (1) training capacity per period and (2) periods that do not allow training. To analyze the impact of different training scenarios, a multi-period workforce scheduling problem with workers who learn through learning-by-doing and training is considered. The model further incorporates forgetting. We distinguish a flexible and a budgeted training environment. In the budgeted setting, training measures are only available in the first periods of a production ramp-up to a limited extent. Data from a computational study with 600 scenarios and near-optimal solutions are analyzed statistically to derive insights into an employee’s skill development. Overall, we investigate different training strategies under demand volatility and capacity scenarios and analyze the specific outcomes in order to provide managerial implications. Our results indicate that traditional budgeting of training measures has a negative effect on employee learning. The negative impact of budgeting is stronger when production capacity is scarce and demand cannot be fully satisfied.

Suggested Citation

  • Patricia Heuser & Peter Letmathe & Matthias Schinner, 2022. "Workforce planning in production with flexible or budgeted employee training and volatile demand," Journal of Business Economics, Springer, vol. 92(7), pages 1093-1124, September.
  • Handle: RePEc:spr:jbecon:v:92:y:2022:i:7:d:10.1007_s11573-022-01090-z
    DOI: 10.1007/s11573-022-01090-z
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11573-022-01090-z
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11573-022-01090-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jaber, Mohamad Y. & Guiffrida, Alfred L., 2008. "Learning curves for imperfect production processes with reworks and process restoration interruptions," European Journal of Operational Research, Elsevier, vol. 189(1), pages 93-104, August.
    2. Gutjahr, Walter J. & Katzensteiner, Stefan & Reiter, Peter & Stummer, Christian & Denk, Michaela, 2010. "Multi-objective decision analysis for competence-oriented project portfolio selection," European Journal of Operational Research, Elsevier, vol. 205(3), pages 670-679, September.
    3. De Bruecker, Philippe & Van den Bergh, Jorne & Beliën, Jeroen & Demeulemeester, Erik, 2015. "Workforce planning incorporating skills: State of the art," European Journal of Operational Research, Elsevier, vol. 243(1), pages 1-16.
    4. Klaus R.N. Hansen & Martin Grunow, 2015. "Modelling ramp-up curves to reflect learning: improving capacity planning in secondary pharmaceutical production," International Journal of Production Research, Taylor & Francis Journals, vol. 53(18), pages 5399-5417, September.
    5. Grosse, Eric H. & Glock, Christoph H. & Müller, Sebastian, 2015. "Production economics and the learning curve: A meta-analysis," International Journal of Production Economics, Elsevier, vol. 170(PB), pages 401-412.
    6. Holweg, Matthias & Reichhart, Andreas & Hong, Eui, 2011. "On risk and cost in global sourcing," International Journal of Production Economics, Elsevier, vol. 131(1), pages 333-341, May.
    7. Michael A. Lapré & Amit Shankar Mukherjee & Luk N. Van Wassenhove, 2000. "Behind the Learning Curve: Linking Learning Activities to Waste Reduction," Management Science, INFORMS, vol. 46(5), pages 597-611, May.
    8. Burak Büke & Özgür M. Araz & John W. Fowler, 2016. "Cross-Training with Imperfect Training Schemes," Production and Operations Management, Production and Operations Management Society, vol. 25(7), pages 1216-1231, July.
    9. Terwiesch, Christian & E. Bohn, Roger, 2001. "Learning and process improvement during production ramp-up," International Journal of Production Economics, Elsevier, vol. 70(1), pages 1-19, March.
    10. Jaber, Mohamad Y. & Kher, Hemant V. & Davis, Darwin J., 2003. "Countering forgetting through training and deployment," International Journal of Production Economics, Elsevier, vol. 85(1), pages 33-46, July.
    11. Digiesi, Salvatore & Kock, Ad A.A. & Mummolo, Giovanni & Rooda, Jacobus E., 2009. "The effect of dynamic worker behavior on flow line performance," International Journal of Production Economics, Elsevier, vol. 120(2), pages 368-377, August.
    12. Janice E. Carrillo & Cheryl Gaimon, 2000. "Improving Manufacturing Performance Through Process Change and Knowledge Creation," Management Science, INFORMS, vol. 46(2), pages 265-288, February.
    13. Petrit (Pete) Dode & Michael Greig & Saeed Zolfaghari & W. Patrick Neumann, 2016. "Integrating human factors into discrete event simulation: a proactive approach to simultaneously design for system performance and employees’ well being," International Journal of Production Research, Taylor & Francis Journals, vol. 54(10), pages 3105-3117, May.
    14. Grosse, E. H. & Glock, C. H. & Müller, Seb., 2015. "Production economics and the learning curve: A Meta-Analysis," Publications of Darmstadt Technical University, Institute for Business Studies (BWL) 74127, Darmstadt Technical University, Department of Business Administration, Economics and Law, Institute for Business Studies (BWL).
    15. Argote, Linda & Ingram, Paul, 2000. "Knowledge Transfer: A Basis for Competitive Advantage in Firms," Organizational Behavior and Human Decision Processes, Elsevier, vol. 82(1), pages 150-169, May.
    16. Glock, C. H. & Grosse, E. H., 2015. "Decision support models for production ramp-up: A systematic literature review," Publications of Darmstadt Technical University, Institute for Business Studies (BWL) 74024, Darmstadt Technical University, Department of Business Administration, Economics and Law, Institute for Business Studies (BWL).
    17. George L. Vairaktarakis, 2003. "The Value of Resource Flexibility in the Resource-Constrained Job Assignment Problem," Management Science, INFORMS, vol. 49(6), pages 718-732, June.
    18. Valeva, Silviya & Hewitt, Mike & Thomas, Barrett W. & Brown, Kenneth G., 2017. "Balancing flexibility and inventory in workforce planning with learning," International Journal of Production Economics, Elsevier, vol. 183(PA), pages 194-207.
    19. D-L Yang & W-H Kuo, 2007. "Single-machine scheduling with an actual time-dependent learning effect," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 58(10), pages 1348-1353, October.
    20. Biskup, Dirk, 2008. "A state-of-the-art review on scheduling with learning effects," European Journal of Operational Research, Elsevier, vol. 188(2), pages 315-329, July.
    21. Qin, Ruwen & Nembhard, David A., 2010. "Workforce agility for stochastically diffused conditions--A real options perspective," International Journal of Production Economics, Elsevier, vol. 125(2), pages 324-334, June.
    22. Christoph H. Glock & Eric H. Grosse, 2015. "Decision support models for production ramp-up: a systematic literature review," International Journal of Production Research, Taylor & Francis Journals, vol. 53(21), pages 6637-6651, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Heuser, Patricia & Tauer, Björn, 2023. "Single-machine scheduling with product category-based learning and forgetting effects," Omega, Elsevier, vol. 115(C).
    2. Annika Becker & Raik Stolletz & Thomas Stäblein, 2017. "Strategic ramp-up planning in automotive production networks," International Journal of Production Research, Taylor & Francis Journals, vol. 55(1), pages 59-78, January.
    3. Jaber, Mohamad Y. & Khan, Mehmood, 2010. "Managing yield by lot splitting in a serial production line with learning, rework and scrap," International Journal of Production Economics, Elsevier, vol. 124(1), pages 32-39, March.
    4. Cavagnini, Rossana & Hewitt, Mike & Maggioni, Francesca, 2020. "Workforce production planning under uncertain learning rates," International Journal of Production Economics, Elsevier, vol. 225(C).
    5. Bai, Danyu & Tang, Mengqian & Zhang, Zhi-Hai & Santibanez-Gonzalez, Ernesto DR, 2018. "Flow shop learning effect scheduling problem with release dates," Omega, Elsevier, vol. 78(C), pages 21-38.
    6. M. Jaber & Z. Givi, 2015. "Imperfect production process with learning and forgetting effects," Computational Management Science, Springer, vol. 12(1), pages 129-152, January.
    7. Wang, Xiong & Ferreira, Fernando A.F. & Chang, Ching-Ter, 2022. "Multi-objective competency-based approach to project scheduling and staff assignment: Case study of an internal audit project," Socio-Economic Planning Sciences, Elsevier, vol. 81(C).
    8. Nadeau, Marie-Claude & Kar, Ashish & Roth, Richard & Kirchain, Randolph, 2010. "A dynamic process-based cost modeling approach to understand learning effects in manufacturing," International Journal of Production Economics, Elsevier, vol. 128(1), pages 223-234, November.
    9. Kim, Youngsoo, 2022. "Taxi driver’s learning curves: An empirical analysis," Transportation Research Part A: Policy and Practice, Elsevier, vol. 166(C), pages 1-13.
    10. Marie Doumic & Mathieu Mezache & Benoît Perthame & Edouard Ribes & Delphine Salort, 2017. "Strategic Workforce Planning and sales force : a demographic approach to productivity," Working Papers hal-01449812, HAL.
    11. Janice E. Carrillo & Cheryl Gaimon, 2004. "Managing Knowledge-Based Resource Capabilities Under Uncertainty," Management Science, INFORMS, vol. 50(11), pages 1504-1518, November.
    12. Yamane, Yasuo & Takahashi, Katsuhiko & Hamada, Kunihiro & Morikawa, Katsumi & Nur Bahagia, Senator & Diawati, Lucia & Cakravastia, Andi, 2015. "Developing a plant system prediction model for technology transfer," International Journal of Production Economics, Elsevier, vol. 166(C), pages 119-128.
    13. Linda Argote & Ella Miron-Spektor, 2011. "Organizational Learning: From Experience to Knowledge," Organization Science, INFORMS, vol. 22(5), pages 1123-1137, October.
    14. Youngsoo Kim & Ramayya Krishnan & Linda Argote, 2012. "The Learning Curve of IT Knowledge Workers in a Computing Call Center," Information Systems Research, INFORMS, vol. 23(3-part-2), pages 887-902, September.
    15. Opacic, Luke & Sowlati, Taraneh & Mobini, Mahdi, 2018. "Design and development of a simulation-based decision support tool to improve the production process at an engineered wood products mill," International Journal of Production Economics, Elsevier, vol. 199(C), pages 209-219.
    16. Robert S. Huckman & Bradley R. Staats, 2008. "Variation in Experience and Team Familiarity: Addressing the Knowledge Acquisition-Application Problem," Harvard Business School Working Papers 09-035, Harvard Business School.
    17. Kai-biao Sun & Hong-xing Li, 2009. "Some single-machine scheduling problems with actual time and position dependent learning effects," Fuzzy Information and Engineering, Springer, vol. 1(2), pages 161-177, June.
    18. Carolyn D. Egelman & Dennis Epple & Linda Argote & Erica R.H. Fuchs, 2013. "Learning by Doing in a Multi-Product Manufacturing Environment: Product Variety, Customizations, and Overlapping Product Generations," NBER Working Papers 19674, National Bureau of Economic Research, Inc.
    19. Jiang, Zhongyi & Chen, Fangfang & Kang, Huiyan, 2013. "Single-machine scheduling problems with actual time-dependent and job-dependent learning effect," European Journal of Operational Research, Elsevier, vol. 227(1), pages 76-80.
    20. De Bruecker, Philippe & Beliën, Jeroen & Van den Bergh, Jorne & Demeulemeester, Erik, 2018. "A three-stage mixed integer programming approach for optimizing the skill mix and training schedules for aircraft maintenance," European Journal of Operational Research, Elsevier, vol. 267(2), pages 439-452.

    More about this item

    Keywords

    Employee Skill Development; Budgeted Training; Workforce Scheduling; Demand Volatility; Learning and Forgetting;
    All these keywords.

    JEL classification:

    • M11 - Business Administration and Business Economics; Marketing; Accounting; Personnel Economics - - Business Administration - - - Production Management

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jbecon:v:92:y:2022:i:7:d:10.1007_s11573-022-01090-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.