Unveiling Land Use Dynamics: Insights from a Hierarchical Bayesian Spatio-Temporal Modelling of Compositional Data
Author
Abstract
Suggested Citation
DOI: 10.1007/s13253-025-00678-6
Download full text from publisher
As the access to this document is restricted, you may want to
for a different version of it.References listed on IDEAS
- Cameron,A. Colin & Trivedi,Pravin K., 2013.
"Regression Analysis of Count Data,"
Cambridge Books,
Cambridge University Press, number 9781107667273, September.
- Cameron,A. Colin & Trivedi,Pravin K., 2013. "Regression Analysis of Count Data," Cambridge Books, Cambridge University Press, number 9781107014169, Enero-Abr.
- Raja Chakir & Olivier Parent, 2009.
"Determinants of land use changes: A spatial multinomial probit approach,"
Papers in Regional Science, Wiley Blackwell, vol. 88(2), pages 327-344, June.
- Olivier Parent & Raja Chakir, 2008. "Determinants of land use changes: a spatial multinomial probit approach," University of Cincinnati, Economics Working Papers Series 2008-06, University of Cincinnati, Department of Economics.
- Raja Chakir, 2009. "Spatial Downscaling of Agricultural Land-Use Data: An Econometric Approach Using Cross Entropy," Land Economics, University of Wisconsin Press, vol. 85(2), pages 238-251.
- Michael Greenacre & Eric Grunsky, 2019. "The isometric logratio transformation in compositional data analysis: a practical evaluation," Economics Working Papers 1627, Department of Economics and Business, Universitat Pompeu Fabra.
- You, Liangzhi & Wood, Stanley, 2006. "An entropy approach to spatial disaggregation of agricultural production," Agricultural Systems, Elsevier, vol. 90(1-3), pages 329-347, October.
- Julian Besag & Jeremy York & Annie Mollié, 1991. "Bayesian image restoration, with two applications in spatial statistics," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 43(1), pages 1-20, March.
- Marcos O. Prates & Douglas R. M. Azevedo & Ying C. MacNab & Michael R. Willig, 2022. "Non‐separable spatio‐temporal models via transformed multivariate Gaussian Markov random fields," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 71(5), pages 1116-1136, November.
- François Bareille & Raja Chakir, 2024.
"Structural identification of weather impacts on crop yields: Disentangling agronomic from adaptation effects,"
American Journal of Agricultural Economics, John Wiley & Sons, vol. 106(3), pages 989-1019, May.
- François Bareille & Raja Chakir, 2024. "Structural identification of weather impacts on crop yields: Disentangling agronomic from adaptation effects [Identification structurelle des impacts météorologiques sur les rendements des cultures," Post-Print hal-04160898, HAL.
- Mullahy, John, 1986. "Specification and testing of some modified count data models," Journal of Econometrics, Elsevier, vol. 33(3), pages 341-365, December.
- Tamás Krisztin & Philipp Piribauer & Michael Wögerer, 2022.
"A spatial multinomial logit model for analysing urban expansion,"
Spatial Economic Analysis, Taylor & Francis Journals, vol. 17(2), pages 223-244, April.
- Tam'as Krisztin & Philipp Piribauer & Michael Wogerer, 2020. "A spatial multinomial logit model for analysing urban expansion," Papers 2008.00673, arXiv.org.
- James P. Lesage, 2008. "An Introduction to Spatial Econometrics," Revue d'économie industrielle, De Boeck Université, vol. 0(3), pages 19-44.
- Wang, Craig & Furrer, Reinhard, 2021. "Combining heterogeneous spatial datasets with process-based spatial fusion models: A unifying framework," Computational Statistics & Data Analysis, Elsevier, vol. 161(C).
- Finn Lindgren & Håvard Rue & Johan Lindström, 2011. "An explicit link between Gaussian fields and Gaussian Markov random fields: the stochastic partial differential equation approach," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 73(4), pages 423-498, September.
- Chakir, Raja & Le Gallo, Julie, 2013. "Predicting land use allocation in France: A spatial panel data analysis," Ecological Economics, Elsevier, vol. 92(C), pages 114-125.
- Chuanrong Zhang & Xinba Li, 2022. "Land Use and Land Cover Mapping in the Era of Big Data," Land, MDPI, vol. 11(10), pages 1-22, September.
- Issam-Ali Moindjié & Corentin Pinsard & Francesco Accatino & Raja Chakir, 2022. "Interactions between ecosystem services and land use in France: A spatial statistical analysis [Interactions entre les services écosystémiques et l'utilisation des terres en France : une analyse st," Post-Print hal-03890135, HAL.
- Virgilio Gómez-Rubio & Roger S. Bivand & Håvard Rue, 2021. "Estimating Spatial Econometrics Models with Integrated Nested Laplace Approximation," Mathematics, MDPI, vol. 9(17), pages 1-23, August.
- Lindgren, Finn & Rue, Håvard, 2015. "Bayesian Spatial Modelling with R-INLA," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 63(i19).
- Jonathan R. Bradley & Christopher K. Wikle & Scott H. Holan, 2016. "Bayesian Spatial Change of Support for Count-Valued Survey Data With Application to the American Community Survey," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(514), pages 472-487, April.
- Stefanie Muff & Andrea Riebler & Leonhard Held & Håvard Rue & Philippe Saner, 2015. "Bayesian analysis of measurement error models using integrated nested Laplace approximations," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 64(2), pages 231-252, February.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Felicetta Carillo & Paolo Maranzano & Philipp Otto, 2025. "Editorial for the special issue on New Perspectives in Statistics, Data Science and Econometrics for Agriculture, Land Use and Forestry," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 30(2), pages 255-260, June.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- António Xavier & Rui Fragoso & Maria De Belém Costa Freitas & Maria Do Socorro Rosário & Florentino Valente, 2018. "A Minimum Cross-Entropy Approach to Disaggregate Agricultural Data at the Field Level," Land, MDPI, vol. 7(2), pages 1-16, May.
- Lungarska, Anna & Chakir, Raja, 2018.
"Climate-induced Land Use Change in France: Impacts of Agricultural Adaptation and Climate Change Mitigation,"
Ecological Economics, Elsevier, vol. 147(C), pages 134-154.
- Anna Lungarska & Raja Chakir, 2018. "Climate induced land use change in France: impacts of agricultural adaptation and climate change mitigation [Changements des usages des sols dus au changement climatique : impacts de l'adaptation e," Post-Print hal-02628936, HAL.
- Chen, Yewen & Chang, Xiaohui & Luo, Fangzhi & Huang, Hui, 2023. "Additive dynamic models for correcting numerical model outputs," Computational Statistics & Data Analysis, Elsevier, vol. 187(C).
- Nikolas Kuschnig, 2022. "Bayesian spatial econometrics: a software architecture," Journal of Spatial Econometrics, Springer, vol. 3(1), pages 1-25, December.
- Wang, Craig & Furrer, Reinhard, 2021. "Combining heterogeneous spatial datasets with process-based spatial fusion models: A unifying framework," Computational Statistics & Data Analysis, Elsevier, vol. 161(C).
- Zongyuan Xia & Bo Tang & Long Qin & Huiguo Zhang & Xijian Hu, 2023. "Spatially Dependent Bayesian Modeling of Geostatistics Data and Its Application for Tuberculosis (TB) in China," Mathematics, MDPI, vol. 11(19), pages 1-15, October.
- Márcio Poletti Laurini, 2017. "A continuous spatio-temporal model for house prices in the USA," The Annals of Regional Science, Springer;Western Regional Science Association, vol. 58(1), pages 235-269, January.
- K. Shuvo Bakar & Nicholas Biddle & Philip Kokic & Huidong Jin, 2020. "A Bayesian spatial categorical model for prediction to overlapping geographical areas in sample surveys," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 183(2), pages 535-563, February.
- Andre Python & Andreas Bender & Marta Blangiardo & Janine B. Illian & Ying Lin & Baoli Liu & Tim C.D. Lucas & Siwei Tan & Yingying Wen & Davit Svanidze & Jianwei Yin, 2022. "A downscaling approach to compare COVID‐19 count data from databases aggregated at different spatial scales," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 185(1), pages 202-218, January.
- Christian Kleiber & Achim Zeileis, 2016.
"Visualizing Count Data Regressions Using Rootograms,"
The American Statistician, Taylor & Francis Journals, vol. 70(3), pages 296-303, July.
- Christian Kleiber & Achim Zeileis, 2014. "Visualizing Count Data Regressions Using Rootograms," Working Papers 2014-20, Faculty of Economics and Statistics, Universität Innsbruck.
- Kleiber, Christian & Zeileis, Achim, 2014. "Visualizing Count Data Regressions Using Rootograms," Working papers 2014/13, Faculty of Business and Economics - University of Basel.
- Ruiman Zhong & Paula Moraga, 2024. "Bayesian Hierarchical Models for the Combination of Spatially Misaligned Data: A Comparison of Melding and Downscaler Approaches Using INLA and SPDE," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 29(1), pages 110-129, March.
- J. M. C. Santos Silva & Silvana Tenreyro, 2022.
"The Log of Gravity at 15,"
Portuguese Economic Journal, Springer;Instituto Superior de Economia e Gestao, vol. 21(3), pages 423-437, September.
- J.M.C. Santos Silva & Silvana Tenreyro, 2021. "The Log of Gravity At 15," School of Economics Discussion Papers 0121, School of Economics, University of Surrey.
- Silva, J.M.C. Santos & Tenreyo, Silvana, 2022. "The Log of Gravity at 15," LSE Research Online Documents on Economics 112437, London School of Economics and Political Science, LSE Library.
- Deborah Kanda & Jingjing Yin & Xinyan Zhang & Hani Samawi, 2025. "Efficient regression analyses with zero-augmented models based on ranking," Computational Statistics, Springer, vol. 40(2), pages 601-632, February.
- Chiara Bocci & Laura Grassini & Emilia Rocco, 2021. "A multiple inflated negative binomial hurdle regression model: analysis of the Italians’ tourism behaviour during the Great Recession," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 30(4), pages 1109-1133, October.
- António Xavier & Rui Fragoso & Maria Belém Costa Freitas & Maria Socorro Rosário, 2019. "An Approach Using Entropy and Supervised Classifications to Disaggregate Agricultural Data at a Local Level," Journal of Quantitative Economics, Springer;The Indian Econometric Society (TIES), vol. 17(4), pages 763-779, December.
- Bondo, Kristin J. & Rosenberry, Christopher S. & Stainbrook, David & Walter, W. David, 2024. "Comparing risk of chronic wasting disease occurrence using Bayesian hierarchical spatial models and different surveillance types," Ecological Modelling, Elsevier, vol. 493(C).
- Edgar Santos‐Fernandez & Erin E. Peterson & Julie Vercelloni & Em Rushworth & Kerrie Mengersen, 2021. "Correcting misclassification errors in crowdsourced ecological data: A Bayesian perspective," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 70(1), pages 147-173, January.
- Ying C. MacNab, 2018. "Some recent work on multivariate Gaussian Markov random fields," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 27(3), pages 497-541, September.
- Jonathan Wakefield & Taylor Okonek & Jon Pedersen, 2020. "Small Area Estimation for Disease Prevalence Mapping," International Statistical Review, International Statistical Institute, vol. 88(2), pages 398-418, August.
- Jacqueline D. Seufert & Andre Python & Christoph Weisser & Elías Cisneros & Krisztina Kis‐Katos & Thomas Kneib, 2022. "Mapping ex ante risks of COVID‐19 in Indonesia using a Bayesian geostatistical model on airport network data," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 185(4), pages 2121-2155, October.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jagbes:v:30:y:2025:i:2:d:10.1007_s13253-025-00678-6. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.