IDEAS home Printed from https://ideas.repec.org/a/spr/finsto/v21y2017i3d10.1007_s00780-017-0333-7.html
   My bibliography  Save this article

Alpha-CIR model with branching processes in sovereign interest rate modeling

Author

Listed:
  • Ying Jiao

    (Université Claude Bernard-Lyon 1
    Peking University)

  • Chunhua Ma

    (Nankai University)

  • Simone Scotti

    (Université Paris Diderot-Paris 7)

Abstract

We introduce a class of interest rate models, called the α $\alpha$ -CIR model, which is a natural extension of the standard CIR model by adding a jump part driven by α $\alpha$ -stable Lévy processes with index α ∈ ( 1 , 2 ] $\alpha\in(1,2]$ . We deduce an explicit expression for the bond price by using the fact that the model belongs to the family of CBI and affine processes, and analyze the bond price and bond yield behaviors. The α $\alpha$ -CIR model allows us to describe in a unified and parsimonious way several recent observations on the sovereign bond market such as the persistency of low interest rates together with the presence of large jumps. Finally, we provide a thorough analysis of the jumps, and in particular the large jumps.

Suggested Citation

  • Ying Jiao & Chunhua Ma & Simone Scotti, 2017. "Alpha-CIR model with branching processes in sovereign interest rate modeling," Finance and Stochastics, Springer, vol. 21(3), pages 789-813, July.
  • Handle: RePEc:spr:finsto:v:21:y:2017:i:3:d:10.1007_s00780-017-0333-7
    DOI: 10.1007/s00780-017-0333-7
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00780-017-0333-7
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00780-017-0333-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ernst Eberlein & Sebastian Raible, 1999. "Term Structure Models Driven by General Lévy Processes," Mathematical Finance, Wiley Blackwell, vol. 9(1), pages 31-53, January.
    2. Gibbons, Michael R & Ramaswamy, Krishna, 1993. "A Test of the Cox, Ingersoll, and Ross Model of the Term Structure," The Review of Financial Studies, Society for Financial Studies, vol. 6(3), pages 619-658.
    3. John C. Cox & Jonathan E. Ingersoll Jr. & Stephen A. Ross, 2005. "A Theory Of The Term Structure Of Interest Rates," World Scientific Book Chapters, in: Sudipto Bhattacharya & George M Constantinides (ed.), Theory Of Valuation, chapter 5, pages 129-164, World Scientific Publishing Co. Pte. Ltd..
    4. D. P. Kennedy, 1994. "The Term Structure Of Interest Rates As A Gaussian Random Field," Mathematical Finance, Wiley Blackwell, vol. 4(3), pages 247-258, July.
    5. Thibault Jaisson & Mathieu Rosenbaum, 2013. "Limit theorems for nearly unstable Hawkes processes," Papers 1310.2033, arXiv.org, revised Mar 2015.
    6. Li, Zenghu & Ma, Chunhua, 2015. "Asymptotic properties of estimators in a stable Cox–Ingersoll–Ross model," Stochastic Processes and their Applications, Elsevier, vol. 125(8), pages 3196-3233.
    7. Duhalde, Xan & Foucart, Clément & Ma, Chunhua, 2014. "On the hitting times of continuous-state branching processes with immigration," Stochastic Processes and their Applications, Elsevier, vol. 124(12), pages 4182-4201.
    8. Keller-Ressel, Martin & Mijatović, Aleksandar, 2012. "On the limit distributions of continuous-state branching processes with immigration," Stochastic Processes and their Applications, Elsevier, vol. 122(6), pages 2329-2345.
    9. Fu, Zongfei & Li, Zenghu, 2010. "Stochastic equations of non-negative processes with jumps," Stochastic Processes and their Applications, Elsevier, vol. 120(3), pages 306-330, March.
    10. Martin Keller-Ressel & Thomas Steiner, 2008. "Yield curve shapes and the asymptotic short rate distribution in affine one-factor models," Finance and Stochastics, Springer, vol. 12(2), pages 149-172, April.
    11. Aït-Sahalia, Yacine & Cacho-Diaz, Julio & Laeven, Roger J.A., 2015. "Modeling financial contagion using mutually exciting jump processes," Journal of Financial Economics, Elsevier, vol. 117(3), pages 585-606.
    12. Brown, Stephen J & Dybvig, Philip H, 1986. "The Empirical Implications of the Cox, Ingersoll, Ross Theory of the Term Structure of Interest Rates," Journal of Finance, American Finance Association, vol. 41(3), pages 617-630, July.
    13. Kallsen, Jan & Muhle-Karbe, Johannes, 2010. "Exponentially affine martingales, affine measure changes and exponential moments of affine processes," Stochastic Processes and their Applications, Elsevier, vol. 120(2), pages 163-181, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Alessandro Bondi & Sergio Pulido & Simone Scotti, 2022. "The rough Hawkes Heston stochastic volatility model," Working Papers hal-03827332, HAL.
    2. Mesias Alfeus, 2019. "Stochastic Modelling of New Phenomena in Financial Markets," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 1-2019, January-A.
    3. Pingping Jiang & Bo Li & Yongjin Wang, 2020. "Exit Times, Undershoots and Overshoots for Reflected CIR Process with Two-Sided Jumps," Methodology and Computing in Applied Probability, Springer, vol. 22(2), pages 693-710, June.
    4. Claudio Fontana & Alessandro Gnoatto & Guillaume Szulda, 2021. "CBI-time-changed L\'evy processes for multi-currency modeling," Papers 2112.02440, arXiv.org, revised Jul 2022.
    5. M.E. Mancino & S. Scotti & G. Toscano, 2020. "Is the Variance Swap Rate Affine in the Spot Variance? Evidence from S&P500 Data," Applied Mathematical Finance, Taylor & Francis Journals, vol. 27(4), pages 288-316, July.
    6. Backwell, Alex & Hayes, Joshua, 2022. "Expected and Unexpected Jumps in the Overnight Rate: Consistent Management of the Libor Transition," Journal of Banking & Finance, Elsevier, vol. 145(C).
    7. Matyas Barczy & Mohamed Ben Alaya & Ahmed Kebaier & Gyula Pap, 2017. "Asymptotic properties of maximum likelihood estimator for the growth rate of a stable CIR process based on continuous time observations," Papers 1711.02140, arXiv.org, revised Feb 2019.
    8. Jianhai Bao & Jian Wang, 2023. "Coupling methods and exponential ergodicity for two‐factor affine processes," Mathematische Nachrichten, Wiley Blackwell, vol. 296(5), pages 1716-1736, May.
    9. repec:uts:finphd:41 is not listed on IDEAS
    10. Frikha, Noufel & Li, Libo, 2021. "Well-posedness and approximation of some one-dimensional Lévy-driven non-linear SDEs," Stochastic Processes and their Applications, Elsevier, vol. 132(C), pages 76-107.
    11. Aur'elien Alfonsi & Guillaume Szulda, 2024. "On non-negative solutions of stochastic Volterra equations with jumps and non-Lipschitz coefficients," Papers 2402.19203, arXiv.org, revised Jul 2024.
    12. Ying Jiao & Chunhua Ma & Simone Scotti & Chao Zhou, 2018. "The Alpha-Heston Stochastic Volatility Model," Papers 1812.01914, arXiv.org.
    13. Micha{l} Barski & Rafa{l} {L}ochowski, 2023. "Classification and calibration of affine models driven by independent L\'evy processes," Papers 2303.08477, arXiv.org.
    14. Riccardo Brignone & Carlo Sgarra, 2020. "Asian options pricing in Hawkes-type jump-diffusion models," Annals of Finance, Springer, vol. 16(1), pages 101-119, March.
    15. Alessandro Bondi & Sergio Pulido & Simone Scotti, 2022. "The rough Hawkes Heston stochastic volatility model," Papers 2210.12393, arXiv.org.
    16. Jiao, Ying & Ma, Chunhua & Scotti, Simone & Sgarra, Carlo, 2019. "A branching process approach to power markets," Energy Economics, Elsevier, vol. 79(C), pages 144-156.
    17. Fontana, Claudio & Gnoatto, Alessandro & Szulda, Guillaume, 2023. "CBI-time-changed Lévy processes," Stochastic Processes and their Applications, Elsevier, vol. 163(C), pages 323-349.
    18. Micha{l} Barski & Rafa{l} {L}ochowski, 2024. "Affine term structure models driven by independent L\'evy processes," Papers 2402.07503, arXiv.org.
    19. Ingemar Kaj & Mine Caglar, 2017. "A buffer Hawkes process for limit order books," Papers 1710.03506, arXiv.org.
    20. Kensuke Kato & Nobuhiro Nakamura, 2024. "PDE-Based Bayesian Inference of CEV Dynamics for Credit Risk in Stock Prices," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 31(2), pages 389-421, June.
    21. Li, Libo & Taguchi, Dai, 2019. "On the Euler–Maruyama scheme for spectrally one-sided Lévy driven SDEs with Hölder continuous coefficients," Statistics & Probability Letters, Elsevier, vol. 146(C), pages 15-26.
    22. Ying Jiao & Chunhua Ma & Simone Scotti & Chao Zhou, 2021. "The Alpha‐Heston stochastic volatility model," Mathematical Finance, Wiley Blackwell, vol. 31(3), pages 943-978, July.
    23. Claudio Fontana & Alessandro Gnoatto & Guillaume Szulda, 2022. "CBI-time-changed Lévy processes," Working Papers 05/2022, University of Verona, Department of Economics.
    24. Chen, Li & Ma, Yong & Xiao, Weilin, 2022. "Pricing defaultable bonds under Hawkes jump-diffusion processes," Finance Research Letters, Elsevier, vol. 47(PB).
    25. Mesias Alfeus & Kirsty Fitzhenry & Alessia Lederer, 2024. "Stochastic Default Risk Estimation Evidence from the South African Financial Market," Computational Economics, Springer;Society for Computational Economics, vol. 64(3), pages 1715-1756, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ying Jiao & Chunhua Ma & Simone Scotti, 2016. "Alpha-CIR Model with Branching Processes in Sovereign Interest Rate Modelling," Working Papers hal-01275397, HAL.
    2. Ying Jiao & Chunhua Ma & Simone Scotti, 2017. "Alpha-CIR Model with Branching Processes in Sovereign Interest Rate Modelling," Post-Print hal-01275397, HAL.
    3. Ying Jiao & Chunhua Ma & Simone Scotti, 2016. "Alpha-CIR Model with Branching Processes in Sovereign Interest Rate Modelling," Papers 1602.05541, arXiv.org, revised Feb 2016.
    4. Ying Jiao & Chunhua Ma & Simone Scotti & Chao Zhou, 2018. "The Alpha-Heston Stochastic Volatility Model," Papers 1812.01914, arXiv.org.
    5. Matyas Barczy & Mohamed Ben Alaya & Ahmed Kebaier & Gyula Pap, 2016. "Asymptotic properties of maximum likelihood estimator for the growth rate for a jump-type CIR process based on continuous time observations," Papers 1609.05865, arXiv.org, revised Aug 2017.
    6. Micha{l} Barski & Rafa{l} {L}ochowski, 2024. "Affine term structure models driven by independent L\'evy processes," Papers 2402.07503, arXiv.org.
    7. Suresh M. Sundaresan, 2000. "Continuous‐Time Methods in Finance: A Review and an Assessment," Journal of Finance, American Finance Association, vol. 55(4), pages 1569-1622, August.
    8. Isaac Kleshchelski & Nicolas Vincent, 2007. "Robust Equilibrium Yield Curves," Cahiers de recherche 08-02, HEC Montréal, Institut d'économie appliquée.
    9. Boero, G. & Torricelli, C., 1996. "A comparative evaluation of alternative models of the term structure of interest rates," European Journal of Operational Research, Elsevier, vol. 93(1), pages 205-223, August.
    10. Gil-Bazo Javier & Rubio Gonzalo, 2004. "A Nonparametric Dimension Test of the Term Structure," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 8(3), pages 1-28, September.
    11. Dahlquist, Magnus, 1996. "On alternative interest rate processes," Journal of Banking & Finance, Elsevier, vol. 20(6), pages 1093-1119, July.
    12. Longstaff, Francis A. & Santa-Clara, Pedro & Schwartz, Eduardo S., 2001. "Throwing away a billion dollars: the cost of suboptimal exercise strategies in the swaptions market," Journal of Financial Economics, Elsevier, vol. 62(1), pages 39-66, October.
    13. Berardi, Andrea, 1995. "Estimating the Cox, ingersoll and Ross model of the term structure: a multivariate approach," Ricerche Economiche, Elsevier, vol. 49(1), pages 51-74, March.
    14. Ait-Sahalia, Yacine, 1996. "Testing Continuous-Time Models of the Spot Interest Rate," The Review of Financial Studies, Society for Financial Studies, vol. 9(2), pages 385-426.
    15. Dassios, Angelos & Jang, Jiwook & Zhao, Hongbiao, 2019. "A generalised CIR process with externally-exciting and self-exciting jumps and its applications in insurance and finance," LSE Research Online Documents on Economics 102043, London School of Economics and Political Science, LSE Library.
    16. Clark, Ephraim & Lakshmi, Geeta, 2007. "Assymetric information and the pricing of sovereign eurobonds: India 1990-1992," Global Finance Journal, Elsevier, vol. 18(1), pages 124-142.
    17. Ulrich Horst & Wei Xu, 2019. "The Microstructure of Stochastic Volatility Models with Self-Exciting Jump Dynamics," Papers 1911.12969, arXiv.org.
    18. Gong, Fangxiong & Remolona, Eli M, 1997. "Two Factors along the Yield Curve," The Manchester School of Economic & Social Studies, University of Manchester, vol. 65(0), pages 1-31, Supplemen.
    19. Duan, Jin-Chuan & Simonato, Jean-Guy, 1999. "Estimating and Testing Exponential-Affine Term Structure Models by Kalman Filter," Review of Quantitative Finance and Accounting, Springer, vol. 13(2), pages 111-135, September.
    20. Ball, Clifford A. & Torous, Walter N., 1996. "Unit roots and the estimation of interest rate dynamics," Journal of Empirical Finance, Elsevier, vol. 3(2), pages 215-238, June.

    More about this item

    Keywords

    α $alpha$ -Stable Lévy process; CBI process; Affine term structure model; Low interest rate; Sovereign bond;
    All these keywords.

    JEL classification:

    • C02 - Mathematical and Quantitative Methods - - General - - - Mathematical Economics
    • C65 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Miscellaneous Mathematical Tools
    • E43 - Macroeconomics and Monetary Economics - - Money and Interest Rates - - - Interest Rates: Determination, Term Structure, and Effects

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:finsto:v:21:y:2017:i:3:d:10.1007_s00780-017-0333-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.