IDEAS home Printed from https://ideas.repec.org/a/eee/spapps/v125y2015i8p3196-3233.html
   My bibliography  Save this article

Asymptotic properties of estimators in a stable Cox–Ingersoll–Ross model

Author

Listed:
  • Li, Zenghu
  • Ma, Chunhua

Abstract

We study the estimation of a stable Cox–Ingersoll–Ross model, which is a special subcritical continuous-state branching process with immigration. The exponential ergodicity and strong mixing property of the process are proved by a coupling method. The regular variation properties of distributions of the model are studied. The key is to establish the convergence of some point processes and partial sums associated with the model. From those results, we derive the consistency and central limit theorems of the conditional least squares estimators (CLSEs) and the weighted conditional least squares estimators (WCLSEs) of the drift parameters based on low frequency observations. The theorems show that the WCLSEs are more efficient than the CLSEs and their errors have distinct decay rates n−(α−1)/α and n−(α−1)/α2, respectively, as the sample sizes n goes to infinity. The arguments depend heavily on the recent results on the construction and characterization of the model in terms of stochastic equations.

Suggested Citation

  • Li, Zenghu & Ma, Chunhua, 2015. "Asymptotic properties of estimators in a stable Cox–Ingersoll–Ross model," Stochastic Processes and their Applications, Elsevier, vol. 125(8), pages 3196-3233.
  • Handle: RePEc:eee:spapps:v:125:y:2015:i:8:p:3196-3233
    DOI: 10.1016/j.spa.2015.03.002
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304414915000812
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spa.2015.03.002?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. John C. Cox & Jonathan E. Ingersoll Jr. & Stephen A. Ross, 2005. "A Theory Of The Term Structure Of Interest Rates," World Scientific Book Chapters, in: Sudipto Bhattacharya & George M Constantinides (ed.), Theory Of Valuation, chapter 5, pages 129-164, World Scientific Publishing Co. Pte. Ltd..
    2. Samorodnitsky, G. & Grigoriu, M., 2003. "Tails of solutions of certain nonlinear stochastic differential equations driven by heavy tailed Lévy motions," Stochastic Processes and their Applications, Elsevier, vol. 105(1), pages 69-97, May.
    3. Overbeck, Ludger & Rydén, Tobias, 1997. "Estimation in the Cox-Ingersoll-Ross Model," Econometric Theory, Cambridge University Press, vol. 13(3), pages 430-461, June.
    4. Carr, Peter & Wu, Liuren, 2004. "Time-changed Levy processes and option pricing," Journal of Financial Economics, Elsevier, vol. 71(1), pages 113-141, January.
    5. Basrak, Bojan & Segers, Johan, 2009. "Regularly varying multivariate time series," Stochastic Processes and their Applications, Elsevier, vol. 119(4), pages 1055-1080, April.
    6. Fu, Zongfei & Li, Zenghu, 2010. "Stochastic equations of non-negative processes with jumps," Stochastic Processes and their Applications, Elsevier, vol. 120(3), pages 306-330, March.
    7. Hult, Henrik & Lindskog, Filip, 2005. "Extremal behavior of regularly varying stochastic processes," Stochastic Processes and their Applications, Elsevier, vol. 115(2), pages 249-274, February.
    8. Huang, Jianhui & Ma, Chunhua & Zhu, Cai, 2011. "Estimation for discretely observed continuous state branching processes with immigration," Statistics & Probability Letters, Elsevier, vol. 81(8), pages 1104-1111, August.
    9. Benoit Mandelbrot, 2015. "The Variation of Certain Speculative Prices," World Scientific Book Chapters, in: Anastasios G Malliaris & William T Ziemba (ed.), THE WORLD SCIENTIFIC HANDBOOK OF FUTURES MARKETS, chapter 3, pages 39-78, World Scientific Publishing Co. Pte. Ltd..
    10. Wei, C. Z. & Winnicki, J., 1989. "Some asymptotic results for the branching process with immigration," Stochastic Processes and their Applications, Elsevier, vol. 31(2), pages 261-282, April.
    11. Ludger Overbeck, 1998. "Estimation for Continuous Branching Processes," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 25(1), pages 111-126, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Long, Hongwei & Ma, Chunhua & Shimizu, Yasutaka, 2017. "Least squares estimators for stochastic differential equations driven by small Lévy noises," Stochastic Processes and their Applications, Elsevier, vol. 127(5), pages 1475-1495.
    2. Hui He & Zenghu Li & Wei Xu, 2018. "Continuous-State Branching Processes in Lévy Random Environments," Journal of Theoretical Probability, Springer, vol. 31(4), pages 1952-1974, December.
    3. Shen, Leyi & Xia, Xiaoyu & Yan, Litan, 2022. "Least squares estimation for the linear self-repelling diffusion driven by α-stable motions," Statistics & Probability Letters, Elsevier, vol. 181(C).
    4. Ying Jiao & Chunhua Ma & Simone Scotti, 2017. "Alpha-CIR model with branching processes in sovereign interest rate modeling," Finance and Stochastics, Springer, vol. 21(3), pages 789-813, July.
    5. Giorgia Callegaro & Andrea Mazzoran & Carlo Sgarra, 2019. "A Self-Exciting Modelling Framework for Forward Prices in Power Markets," Papers 1910.13286, arXiv.org.
    6. Shukai Chen & Rongjuan Fang & Xiangqi Zheng, 2023. "Wasserstein-Type Distances of Two-Type Continuous-State Branching Processes in Lévy Random Environments," Journal of Theoretical Probability, Springer, vol. 36(3), pages 1572-1590, September.
    7. Ying Jiao & Chunhua Ma & Simone Scotti & Chao Zhou, 2018. "The Alpha-Heston Stochastic Volatility Model," Papers 1812.01914, arXiv.org.
    8. Martin Friesen & Peng Jin & Jonas Kremer & Barbara Rüdiger, 2023. "Regularity of transition densities and ergodicity for affine jump‐diffusions," Mathematische Nachrichten, Wiley Blackwell, vol. 296(3), pages 1117-1134, March.
    9. Mátyás Barczy & Kristóf Körmendi & Gyula Pap, 2016. "Statistical inference for critical continuous state and continuous time branching processes with immigration," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 79(7), pages 789-816, October.
    10. Jiao, Ying & Ma, Chunhua & Scotti, Simone & Sgarra, Carlo, 2019. "A branching process approach to power markets," Energy Economics, Elsevier, vol. 79(C), pages 144-156.
    11. Fabian Mies & Ansgar Steland, 2019. "Nonparametric Gaussian inference for stable processes," Statistical Inference for Stochastic Processes, Springer, vol. 22(3), pages 525-555, October.
    12. Yurong Pan & Litan Yan, 2019. "The Least Squares Estimation for the α-Stable Ornstein-Uhlenbeck Process with Constant Drift," Methodology and Computing in Applied Probability, Springer, vol. 21(4), pages 1165-1182, December.
    13. Fontana, Claudio & Gnoatto, Alessandro & Szulda, Guillaume, 2023. "CBI-time-changed Lévy processes," Stochastic Processes and their Applications, Elsevier, vol. 163(C), pages 323-349.
    14. Yang, Xu, 2017. "Maximum likelihood type estimation for discretely observed CIR model with small α-stable noises," Statistics & Probability Letters, Elsevier, vol. 120(C), pages 18-27.
    15. Ying Jiao & Chunhua Ma & Simone Scotti & Chao Zhou, 2021. "The Alpha‐Heston stochastic volatility model," Mathematical Finance, Wiley Blackwell, vol. 31(3), pages 943-978, July.
    16. Barczy, Mátyás & Basrak, Bojan & Kevei, Péter & Pap, Gyula & Planinić, Hrvoje, 2021. "Statistical inference of subcritical strongly stationary Galton–Watson processes with regularly varying immigration," Stochastic Processes and their Applications, Elsevier, vol. 132(C), pages 33-75.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Matyas Barczy & Mohamed Ben Alaya & Ahmed Kebaier & Gyula Pap, 2016. "Asymptotic properties of maximum likelihood estimator for the growth rate for a jump-type CIR process based on continuous time observations," Papers 1609.05865, arXiv.org, revised Aug 2017.
    2. Barczy, Mátyás & Ben Alaya, Mohamed & Kebaier, Ahmed & Pap, Gyula, 2018. "Asymptotic properties of maximum likelihood estimator for the growth rate for a jump-type CIR process based on continuous time observations," Stochastic Processes and their Applications, Elsevier, vol. 128(4), pages 1135-1164.
    3. Zaevski, Tsvetelin S. & Kim, Young Shin & Fabozzi, Frank J., 2014. "Option pricing under stochastic volatility and tempered stable Lévy jumps," International Review of Financial Analysis, Elsevier, vol. 31(C), pages 101-108.
    4. Matyas Barczy & Mohamed Ben Alaya & Ahmed Kebaier & Gyula Pap, 2017. "Asymptotic properties of maximum likelihood estimator for the growth rate of a stable CIR process based on continuous time observations," Papers 1711.02140, arXiv.org, revised Feb 2019.
    5. Mátyás Barczy & Kristóf Körmendi & Gyula Pap, 2016. "Statistical inference for critical continuous state and continuous time branching processes with immigration," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 79(7), pages 789-816, October.
    6. Pap Gyula & Szabó Tamás T., 2016. "Change detection in the Cox–Ingersoll–Ross model," Statistics & Risk Modeling, De Gruyter, vol. 33(1-2), pages 21-40, September.
    7. Huang, Jianhui & Ma, Chunhua & Zhu, Cai, 2011. "Estimation for discretely observed continuous state branching processes with immigration," Statistics & Probability Letters, Elsevier, vol. 81(8), pages 1104-1111, August.
    8. Matyas Barczy & Leif Doering & Zenghu Li & Gyula Pap, 2012. "On parameter estimation for critical affine processes," Papers 1210.1866, arXiv.org, revised Mar 2013.
    9. Matyas Barczy & Gyula Pap, 2013. "Asymptotic properties of maximum likelihood estimators for Heston models based on continuous time observations," Papers 1310.4783, arXiv.org, revised Jun 2015.
    10. Zani, Marguerite, 2002. "Large deviations for squared radial Ornstein-Uhlenbeck processes," Stochastic Processes and their Applications, Elsevier, vol. 102(1), pages 25-42, November.
    11. Xu, Wei, 2014. "Parameter estimation in two-type continuous-state branching processes with immigration," Statistics & Probability Letters, Elsevier, vol. 91(C), pages 124-134.
    12. Anatoliy Swishchuk, 2013. "Modeling and Pricing of Swaps for Financial and Energy Markets with Stochastic Volatilities," World Scientific Books, World Scientific Publishing Co. Pte. Ltd., number 8660, Juni.
    13. Rehez Ahlip & Laurence A. F. Park & Ante Prodan, 2017. "Pricing currency options in the Heston/CIR double exponential jump-diffusion model," International Journal of Financial Engineering (IJFE), World Scientific Publishing Co. Pte. Ltd., vol. 4(01), pages 1-30, March.
    14. Henri Bertholon & Alain Monfort & Fulvio Pegoraro, 2006. "Pricing and Inference with Mixtures of Conditionally Normal Processes," Working Papers 2006-28, Center for Research in Economics and Statistics.
    15. Jonas Vogt, 2017. "Doubly Stochastic Reduced Form Credit Risk Model and Default Probability Uncertainty – a Technical Toolkit," Journal of Statistical and Econometric Methods, SCIENPRESS Ltd, vol. 6(2), pages 1-2.
    16. Gonzalo Cortazar & Alejandro Bernales & Diether Beuermann, 2005. "Methodology and Implementation of Value-at-Risk Measures in Emerging Fixed-Income Markets with Infrequent Trading," Finance 0512030, University Library of Munich, Germany.
    17. Fergusson, Kevin, 2020. "Less-Expensive Valuation And Reserving Of Long-Dated Variable Annuities When Interest Rates And Mortality Rates Are Stochastic," ASTIN Bulletin, Cambridge University Press, vol. 50(2), pages 381-417, May.
    18. Ying Jiao & Chunhua Ma & Simone Scotti & Chao Zhou, 2018. "The Alpha-Heston Stochastic Volatility Model," Papers 1812.01914, arXiv.org.
    19. Lim, Terence & Lo, Andrew W. & Merton, Robert C. & Scholes, Myron S., 2006. "The Derivatives Sourcebook," Foundations and Trends(R) in Finance, now publishers, vol. 1(5–6), pages 365-572, April.
    20. repec:uts:finphd:40 is not listed on IDEAS
    21. Kozarski, R., 2013. "Pricing and hedging in the VIX derivative market," Other publications TiSEM 221fefe0-241e-4914-b6bd-c, Tilburg University, School of Economics and Management.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:spapps:v:125:y:2015:i:8:p:3196-3233. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/505572/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.