IDEAS home Printed from https://ideas.repec.org/a/spr/eurjco/v5y2017i1d10.1007_s13675-016-0072-0.html
   My bibliography  Save this article

Multi-machine energy-aware scheduling

Author

Listed:
  • David Van Den Dooren

    (KU Leuven)

  • Thomas Sys

    (KU Leuven)

  • Túlio A. M. Toffolo

    (KU Leuven
    Federal University of Ouro Preto)

  • Tony Wauters

    (KU Leuven)

  • Greet Vanden Berghe

    (KU Leuven)

Abstract

The traditional set of manufacturing scheduling problems concern general and easy-to-measure economic objectives such as makespan and tardiness. The variable nature of energy costs over the course of the day remains mostly ignored by most previous research. This variability should not be considered an added complexity, but rather an opportunity for businesses to minimise their energy bill. More effectively scheduling jobs across multiple machines may result in reduced costs despite fixed consumption levels. To this end, this paper proposes a scheduling approach capable of optimising this largely undefined and, consequently, currently unaddressed situation. The proposed multi-machine energy optimisation approach consists of constructive heuristics responsible for generating an initial solution and a late acceptance hill climbing algorithm responsible for improving this initial solution. The combined approach was applied to the scheduling instances of the ICON challenge on Forecasting and Scheduling [The challenge is organized as part of the EU FET-Open: Inductive Constraint Programming (ICON) project (O’Sullivan et al., ICON challenge on forecasting and scheduling. UCC, University College Cork, ICON, Cork. http://iconchallenge.insight-centre.org/challenge-energy , 2014)] whereupon it was proven superior to all other competing algorithms. This achievement highlights the potential of the proposed algorithm insofar as solving the multi-machine energy-aware optimisation problem (MEOP). The new benchmarks are available for further research.

Suggested Citation

  • David Van Den Dooren & Thomas Sys & Túlio A. M. Toffolo & Tony Wauters & Greet Vanden Berghe, 2017. "Multi-machine energy-aware scheduling," EURO Journal on Computational Optimization, Springer;EURO - The Association of European Operational Research Societies, vol. 5(1), pages 285-307, March.
  • Handle: RePEc:spr:eurjco:v:5:y:2017:i:1:d:10.1007_s13675-016-0072-0
    DOI: 10.1007/s13675-016-0072-0
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s13675-016-0072-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s13675-016-0072-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. A. Alan B. Pritsker & Lawrence J. Waiters & Philip M. Wolfe, 1969. "Multiproject Scheduling with Limited Resources: A Zero-One Programming Approach," Management Science, INFORMS, vol. 16(1), pages 93-108, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Cornago, Elisabetta & Dressler, Luisa, 2020. "Incentives to (not) disclose energy performance information in the housing market," Resource and Energy Economics, Elsevier, vol. 61(C).
    2. Campuzano, Felipe & Brown, Robert C. & Martínez, Juan Daniel, 2019. "Auger reactors for pyrolysis of biomass and wastes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 102(C), pages 372-409.
    3. Watson, S.D. & Lomas, K.J. & Buswell, R.A., 2019. "Decarbonising domestic heating: What is the peak GB demand?," Energy Policy, Elsevier, vol. 126(C), pages 533-544.
    4. Oliva H., Sebastian & Passey, Rob & Abdullah, Md Abu, 2019. "A semi-empirical financial assessment of combining residential photovoltaics, energy efficiency and battery storage systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 105(C), pages 206-214.
    5. World Bank Group, 2018. "Commodity Markets Outlook, April 2018," World Bank Publications - Books, The World Bank Group, number 29721.
    6. Zhang, Yufeng & Khani, Alireza, 2021. "Integrating transit systems with ride-sourcing services: A study on the system users’ stochastic equilibrium problem," Transportation Research Part A: Policy and Practice, Elsevier, vol. 150(C), pages 95-123.
    7. Maricic, Vesna Karovic & Danilovic, Dusan & Lekovic, Branko & Crnogorac, Miroslav, 2018. "Energy policy reforms in the Serbian oil sector: An update," Energy Policy, Elsevier, vol. 113(C), pages 348-355.
    8. van der Stelt, Sander & AlSkaif, Tarek & van Sark, Wilfried, 2018. "Techno-economic analysis of household and community energy storage for residential prosumers with smart appliances," Applied Energy, Elsevier, vol. 209(C), pages 266-276.
    9. Beigvand, Soheil Derafshi & Abdi, Hamdi & La Scala, Massimo, 2017. "Economic dispatch of multiple energy carriers," Energy, Elsevier, vol. 138(C), pages 861-872.
    10. Rammer, Christian & Gottschalk, Sandra & Peneder, Michael & Wörter, Martin & Stucki, Tobias & Arvanitis, Spyros, 2017. "Does energy policy hurt international competitiveness of firms? A comparative study for Germany, Switzerland and Austria," Energy Policy, Elsevier, vol. 109(C), pages 154-180.
    11. Lee, Rachel & Homan, Samuel & Mac Dowell, Niall & Brown, Solomon, 2019. "A closed-loop analysis of grid scale battery systems providing frequency response and reserve services in a variable inertia grid," Applied Energy, Elsevier, vol. 236(C), pages 961-972.
    12. Ediger, Volkan Ş. & Kirkil, Gokhan & Çelebi, Emre & Ucal, Meltem & Kentmen-Çin, Çiğdem, 2018. "Turkish public preferences for energy," Energy Policy, Elsevier, vol. 120(C), pages 492-502.
    13. Häckel, Björn & Pfosser, Stefan & Tränkler, Timm, 2017. "Explaining the energy efficiency gap - Expected Utility Theory versus Cumulative Prospect Theory," Energy Policy, Elsevier, vol. 111(C), pages 414-426.
    14. Theocharis, Dimitrios & Rodrigues, Vasco Sanchez & Pettit, Stephen & Haider, Jane, 2019. "Feasibility of the Northern Sea Route: The role of distance, fuel prices, ice breaking fees and ship size for the product tanker market," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 129(C), pages 111-135.
    15. Pandžić, H. & Dvorkin, Y. & Carrión, M., 2018. "Investments in merchant energy storage: Trading-off between energy and reserve markets," Applied Energy, Elsevier, vol. 230(C), pages 277-286.
    16. Ringkjøb, Hans-Kristian & Haugan, Peter M. & Solbrekke, Ida Marie, 2018. "A review of modelling tools for energy and electricity systems with large shares of variable renewables," Renewable and Sustainable Energy Reviews, Elsevier, vol. 96(C), pages 440-459.
    17. Shamsi, Mohammad Haris & Ali, Usman & Mangina, Eleni & O’Donnell, James, 2020. "A framework for uncertainty quantification in building heat demand simulations using reduced-order grey-box energy models," Applied Energy, Elsevier, vol. 275(C).
    18. Trotta, Gianluca, 2018. "The determinants of energy efficient retrofit investments in the English residential sector," Energy Policy, Elsevier, vol. 120(C), pages 175-182.
    19. Kavvadias, Konstantinos C. & Quoilin, Sylvain, 2018. "Exploiting waste heat potential by long distance heat transmission: Design considerations and techno-economic assessment," Applied Energy, Elsevier, vol. 216(C), pages 452-465.
    20. Hoffman, Lauren A. & Ngo, Truc T., 2018. "Affordable solar thermal water heating solution for rural Dominican Republic," Renewable Energy, Elsevier, vol. 115(C), pages 1220-1230.
    21. Soutullo, S. & Giancola, E. & Heras, M.R., 2018. "Dynamic energy assessment to analyze different refurbishment strategies of existing dwellings placed in Madrid," Energy, Elsevier, vol. 152(C), pages 1011-1023.
    22. Smith, Kate & Liu, Shuming & Liu, Ying & Guo, Shengjie, 2018. "Can China reduce energy for water? A review of energy for urban water supply and wastewater treatment and suggestions for change," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 41-58.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jan Böttcher & Andreas Drexl & Rainer Kolisch & Frank Salewski, 1999. "Project Scheduling Under Partially Renewable Resource Constraints," Management Science, INFORMS, vol. 45(4), pages 543-559, April.
    2. Jens Brunner & Jonathan Bard & Rainer Kolisch, 2009. "Flexible shift scheduling of physicians," Health Care Management Science, Springer, vol. 12(3), pages 285-305, September.
    3. Luis F. Machado-Domínguez & Carlos D. Paternina-Arboleda & Jorge I. Vélez & Agustin Barrios-Sarmiento, 2021. "A memetic algorithm to address the multi-node resource-constrained project scheduling problem," Journal of Scheduling, Springer, vol. 24(4), pages 413-429, August.
    4. Adhau, Sunil & Mittal, M.L. & Mittal, Abhinav, 2013. "A multi-agent system for decentralized multi-project scheduling with resource transfers," International Journal of Production Economics, Elsevier, vol. 146(2), pages 646-661.
    5. Christodoulos Floudas & Xiaoxia Lin, 2005. "Mixed Integer Linear Programming in Process Scheduling: Modeling, Algorithms, and Applications," Annals of Operations Research, Springer, vol. 139(1), pages 131-162, October.
    6. Salewski, Frank & Schirmer, Andreas & Drexl, Andreas, 1996. "Project Scheduling under Resource and Mode Identity Constraints. Part II: An Application to Audit-Staff Scheduling," Manuskripte aus den Instituten für Betriebswirtschaftslehre der Universität Kiel 388, Christian-Albrechts-Universität zu Kiel, Institut für Betriebswirtschaftslehre.
    7. Schirmer, Andreas & Riesenberg, Sven, 1997. "Parameterized heuristics for project scheduling: Biased random sampling methods," Manuskripte aus den Instituten für Betriebswirtschaftslehre der Universität Kiel 456, Christian-Albrechts-Universität zu Kiel, Institut für Betriebswirtschaftslehre.
    8. Kramer, Arthur & Dell’Amico, Mauro & Iori, Manuel, 2019. "Enhanced arc-flow formulations to minimize weighted completion time on identical parallel machines," European Journal of Operational Research, Elsevier, vol. 275(1), pages 67-79.
    9. Aristide Mingozzi & Vittorio Maniezzo & Salvatore Ricciardelli & Lucio Bianco, 1998. "An Exact Algorithm for the Resource-Constrained Project Scheduling Problem Based on a New Mathematical Formulation," Management Science, INFORMS, vol. 44(5), pages 714-729, May.
    10. Ripon K. Chakrabortty & Ruhul A. Sarker & Daryl L. Essam, 2020. "Single mode resource constrained project scheduling with unreliable resources," Operational Research, Springer, vol. 20(3), pages 1369-1403, September.
    11. Philippe Lacomme & Aziz Moukrim & Alain Quilliot & Marina Vinot, 2019. "Integration of routing into a resource-constrained project scheduling problem," EURO Journal on Computational Optimization, Springer;EURO - The Association of European Operational Research Societies, vol. 7(4), pages 421-464, December.
    12. Naber, Anulark & Kolisch, Rainer, 2014. "MIP models for resource-constrained project scheduling with flexible resource profiles," European Journal of Operational Research, Elsevier, vol. 239(2), pages 335-348.
    13. Hartmann, Sönke & Briskorn, Dirk, 2010. "A survey of variants and extensions of the resource-constrained project scheduling problem," European Journal of Operational Research, Elsevier, vol. 207(1), pages 1-14, November.
    14. Sciau, Jean-Baptiste & Goyon, Agathe & Sarazin, Alexandre & Bascans, Jérémy & Prud’homme, Charles & Lorca, Xavier, 2024. "Using constraint programming to address the operational aircraft line maintenance scheduling problem," Journal of Air Transport Management, Elsevier, vol. 115(C).
    15. Pablo Alvarez-Campana & Felix Villafanez & Fernando Acebes & David Poza, 2024. "Simulation-based approach for Multiproject Scheduling based on composite priority rules," Papers 2406.02102, arXiv.org.
    16. Gonçalves, J.F. & Mendes, J.J.M. & Resende, M.G.C., 2008. "A genetic algorithm for the resource constrained multi-project scheduling problem," European Journal of Operational Research, Elsevier, vol. 189(3), pages 1171-1190, September.
    17. Kolisch, R., 2000. "Integration of assembly and fabrication for make-to-order production," International Journal of Production Economics, Elsevier, vol. 68(3), pages 287-306, December.
    18. Kolisch, Rainer, 1994. "Serial and parallel resource-constrained projekt scheduling methodes revisited: Theory and computation," Manuskripte aus den Instituten für Betriebswirtschaftslehre der Universität Kiel 344, Christian-Albrechts-Universität zu Kiel, Institut für Betriebswirtschaftslehre.
    19. Gartner, Daniel & Kolisch, Rainer, 2014. "Scheduling the hospital-wide flow of elective patients," European Journal of Operational Research, Elsevier, vol. 233(3), pages 689-699.
    20. van der Beek, T. & Souravlias, D. & van Essen, J.T. & Pruyn, J. & Aardal, K., 2024. "Hybrid differential evolution algorithm for the resource constrained project scheduling problem with a flexible project structure and consumption and production of resources," European Journal of Operational Research, Elsevier, vol. 313(1), pages 92-111.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:eurjco:v:5:y:2017:i:1:d:10.1007_s13675-016-0072-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.