IDEAS home Printed from https://ideas.repec.org/a/spr/envpol/v15y2013i3p271-290.html
   My bibliography  Save this article

Effects of energy-efficiency building codes in the energy savings and emissions of carbon dioxide

Author

Listed:
  • Bishwa Koirala
  • Alok Bohara
  • Hui Li

Abstract

This study estimated the effects of energy-efficiency building codes—IECC 2003 and IECC 2006—in residential energy consumption, using the American Community Survey 2007. This study detected violations of the assumption of independence of observation, corrected them by applying a hierarchical estimation technique, and measured the state’s heterogeneity. We found that households can save about 1.8 % of electricity, 1.3 % of natural gas, and 2.8 % of heating oil with the application of these energy efficiency codes, with corresponding reductions in the emissions of the global warming gas, CO 2 of about 7.54 million metric tons per year if all homes apply these codes. For the pressing requirements of energy security and the limiting the emissions of CO 2 for climate change mitigation, these energy efficiency codes can be an effective environmental policy measure for residential sector. Copyright Springer Japan 2013

Suggested Citation

  • Bishwa Koirala & Alok Bohara & Hui Li, 2013. "Effects of energy-efficiency building codes in the energy savings and emissions of carbon dioxide," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 15(3), pages 271-290, July.
  • Handle: RePEc:spr:envpol:v:15:y:2013:i:3:p:271-290
    DOI: 10.1007/s10018-013-0054-x
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10018-013-0054-x
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10018-013-0054-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bang, Guri, 2010. "Energy security and climate change concerns: Triggers for energy policy change in the United States?," Energy Policy, Elsevier, vol. 38(4), pages 1645-1653, April.
    2. Nordhaus, William D, 1991. "To Slow or Not to Slow: The Economics of the Greenhouse Effect," Economic Journal, Royal Economic Society, vol. 101(407), pages 920-937, July.
    3. Mansur, Erin T. & Mendelsohn, Robert & Morrison, Wendy, 2008. "Climate change adaptation: A study of fuel choice and consumption in the US energy sector," Journal of Environmental Economics and Management, Elsevier, vol. 55(2), pages 175-193, March.
    4. Donald H. Rosenthal & Howard K. Gruenspecht & Emily A. Moran, 1995. "Effects of Global Warming on Energy Use for Space Heating and Cooling in the United States," The Energy Journal, International Association for Energy Economics, vol. 0(Number 2), pages 77-96.
    5. Copeland, Brian R., 2005. "Policy Endogeneity and the Effects of Trade on the Environment," Agricultural and Resource Economics Review, Northeastern Agricultural and Resource Economics Association, vol. 34(1), pages 1-15, April.
    6. Pizer, William A. & Popp, David, 2008. "Endogenizing technological change: Matching empirical evidence to modeling needs," Energy Economics, Elsevier, vol. 30(6), pages 2754-2770, November.
    7. Maddala, G S, et al, 1997. "Estimation of Short-Run and Long-Run Elasticities of Energy Demand from Panel Data Using Shrinkage Estimators," Journal of Business & Economic Statistics, American Statistical Association, vol. 15(1), pages 90-100, January.
    8. Rasha Ahmed, 2012. "Promoting energy-efficient products: voluntary or regulatory approaches?," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 14(3), pages 303-321, July.
    9. Grant D. Jacobsen & Matthew J. Kotchen, 2013. "Are Building Codes Effective at Saving Energy? Evidence from Residential Billing Data in Florida," The Review of Economics and Statistics, MIT Press, vol. 95(1), pages 34-49, March.
    10. Anin Aroonruengsawat, Maximilian Auffhammer, and Alan H. Sanstad, 2012. "The Impact of State Level Building Codes on Residential Electricity Consumption," The Energy Journal, International Association for Energy Economics, vol. 0(Number 1).
    11. Newell, Richard G. & Jaffe, Adam B. & Stavins, Robert N., 2006. "The effects of economic and policy incentives on carbon mitigation technologies," Energy Economics, Elsevier, vol. 28(5-6), pages 563-578, November.
    12. Ronald J. Sutherland, 1991. "Market Barriers to Energy-Efficiency Investments," The Energy Journal, International Association for Energy Economics, vol. 0(Number 3), pages 15-34.
    13. Jeffrey A. Dubin & Allen K. Miedema & Ram V. Chandran, 1986. "Price Effects of Energy-Efficient Technologies: A Study of Residential Demand for Heating and Cooling," RAND Journal of Economics, The RAND Corporation, vol. 17(3), pages 310-325, Autumn.
    14. Baker, Paul & Blundell, Richard & Micklewright, John, 1989. "Modelling Household Energy Expenditures Using Micro-data," Economic Journal, Royal Economic Society, vol. 99(397), pages 720-738, September.
    15. Lee, Ray-Shine & Singh, Nirvikar, 1994. "Patterns in Residential Gas and Electricity Consumption: An Econometric Analysis," Journal of Business & Economic Statistics, American Statistical Association, vol. 12(2), pages 233-241, April.
    16. Daan van Soest & Erwin Bulte, 2001. "Does the Energy-Efficiency Paradox Exist? Technological Progress and Uncertainty," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 18(1), pages 101-112, January.
    17. Peter C. Reiss & Matthew W. White, 2005. "Household Electricity Demand, Revisited," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 72(3), pages 853-883.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Makram El-Shagi & Claus Michelsen & Sebastian Rosenschon, 2014. "Regulation, Innovation and Technology Diffusion: Evidence from Building Energy Efficiency Standards in Germany," Discussion Papers of DIW Berlin 1371, DIW Berlin, German Institute for Economic Research.
    2. Marius Claudy and Claus Michelsen, 2016. "Housing Market Fundamentals, Housing Quality and Energy Consumption: Evidence from Germany," The Energy Journal, International Association for Energy Economics, vol. 0(Number 4).
    3. Miriam Berretta & Joshua Furgeson & Collins Zamawe & Ian Hamilton & Yue Wu & Paul J. Ferraro & Neal Haddaway & John Eyers, 2021. "PROTOCOL: Residential energy efficiency interventions: An effectiveness systematic review," Campbell Systematic Reviews, John Wiley & Sons, vol. 17(4), December.
    4. Michelsen, Claus & El-Shagi, Makram & Rosenschon, Sebastian, 2016. "The diffusion of "green'' buildings in the housing market: empirics on the long run effects of energy efficiency regulation," VfS Annual Conference 2016 (Augsburg): Demographic Change 145534, Verein für Socialpolitik / German Economic Association.
    5. Bishwa S Koirala & Alok K Bohara, 2021. "Do energy efficiency building codes help minimize the efficiency gap in the U.S.? A dynamic panel data approach," Energy & Environment, , vol. 32(3), pages 506-518, May.
    6. Miriam Berretta & Joshua Furgeson & Yue (Nicole) Wu & Collins Zamawe & Ian Hamilton & John Eyers, 2021. "Residential energy efficiency interventions: A meta‐analysis of effectiveness studies," Campbell Systematic Reviews, John Wiley & Sons, vol. 17(4), December.
    7. Wang, Xia & Feng, Wei & Cai, Weiguang & Ren, Hong & Ding, Chao & Zhou, Nan, 2019. "Do residential building energy efficiency standards reduce energy consumption in China? – A data-driven method to validate the actual performance of building energy efficiency standards," Energy Policy, Elsevier, vol. 131(C), pages 82-98.
    8. Koirala, Bishwa S. & Bohara, Alok K. & Berrens, Robert P., 2014. "Estimating the net implicit price of energy efficient building codes on U.S. households," Energy Policy, Elsevier, vol. 73(C), pages 667-675.
    9. Dorothée Charlier & Bérangère Legendre, 2020. "Carbon Dioxide Emissions and aging: Disentangling behavior from energy efficiency," Working Papers 2020.13, FAERE - French Association of Environmental and Resource Economists.
    10. Carolin Baedeker & Julius Piwowar & Philipp Themann & Viktor Grinewitschus & Benjamin Krisemendt & Katja Lepper & Christina Zimmer & Justus von Geibler, 2020. "Interactive Design to Encourage Energy Efficiency in Offices: Developing and Testing a User-Centered Building Management System Based on a Living Lab Approach," Sustainability, MDPI, vol. 12(17), pages 1-29, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Koirala, Bishwa S. & Bohara, Alok K. & Berrens, Robert P., 2014. "Estimating the net implicit price of energy efficient building codes on U.S. households," Energy Policy, Elsevier, vol. 73(C), pages 667-675.
    2. Dorothée CHARLIER & Mouez FODHA & Djamel KIRAT, 2021. "CO2 Emissions from the Residential Sector in Europe: Some Insights form a Country-Level Assessment," LEO Working Papers / DR LEO 2849, Orleans Economics Laboratory / Laboratoire d'Economie d'Orleans (LEO), University of Orleans.
    3. Koji Miyawaki & Yasuhiro Omori & Akira Hibiki, 2018. "A discrete/continuous choice model on a nonconvex budget set," Econometric Reviews, Taylor & Francis Journals, vol. 37(2), pages 89-113, February.
    4. Agarwal, Sumit & Satyanarain, Rengarajan & Sing, Tien Foo & Vollmer, Derek, 2016. "Effects of construction activities on residential electricity consumption: Evidence from Singapore's public housing estates," Energy Economics, Elsevier, vol. 55(C), pages 101-111.
    5. Davis, Lucas & Martinez, Sebastian & Taboada, Bibiana, 2018. "How Effective is Energy-efficient Housing?: Evidence From a Field Experiment in Mexico," IDB Publications (Working Papers) 8767, Inter-American Development Bank.
    6. Lucas W. Davis, 2023. "The Economic Determinants of Heat Pump Adoption," NBER Chapters, in: Environmental and Energy Policy and the Economy, volume 5, pages 162-199, National Bureau of Economic Research, Inc.
    7. Koji Miyawaki & Yasuhiro Omori, 2007. "Duality-Based Analysis of Residential Gas Demand under Decreasing Block Rate Pricing," CIRJE F-Series CIRJE-F-506, CIRJE, Faculty of Economics, University of Tokyo.
    8. Li, Huan & Carrión-Flores, Carmen E., 2017. "An analysis of the ENERGY STAR® program in Alachua County, Florida," Ecological Economics, Elsevier, vol. 131(C), pages 98-108.
    9. Li, Jia & Just, Richard E., 2018. "Modeling household energy consumption and adoption of energy efficient technology," Energy Economics, Elsevier, vol. 72(C), pages 404-415.
    10. Auffhammer, Maximilian, 2022. "Climate Adaptive Response Estimation: Short and long run impacts of climate change on residential electricity and natural gas consumption," Journal of Environmental Economics and Management, Elsevier, vol. 114(C).
    11. Suter, Jordan F. & Shammin, Md Rumi, 2013. "Returns to residential energy efficiency and conservation measures: A field experiment," Energy Policy, Elsevier, vol. 59(C), pages 551-561.
    12. Hilber, Christian A.L. & Palmer, Charles & Pinchbeck, Edward W., 2019. "The energy costs of historic preservation," Journal of Urban Economics, Elsevier, vol. 114(C).
    13. Kostakis, Ioannis & Lolos, Sarantis & Sardianou, Eleni, 2021. "Residential natural gas demand: Assessing the evidence from Greece using pseudo-panels, 2012–2019," Energy Economics, Elsevier, vol. 99(C).
    14. Matthew Ranson & Lauren Morris & Alex Kats-Rubin, 2014. "Climate Change and Space Heating Energy Demand: A Review of the Literature," NCEE Working Paper Series 201407, National Center for Environmental Economics, U.S. Environmental Protection Agency, revised Dec 2014.
    15. Kenneth Gillingham & Karen Palmer, 2014. "Bridging the Energy Efficiency Gap: Policy Insights from Economic Theory and Empirical Evidence," Review of Environmental Economics and Policy, Association of Environmental and Resource Economists, vol. 8(1), pages 18-38, January.
    16. Koji Miyawaki & Yasuhiro Omori & Akira Hibiki, 2010. "Discrete/Continuous Choice Model of the Residential Gas Demand on the Nonconvex Budget Set," CIRJE F-Series CIRJE-F-770, CIRJE, Faculty of Economics, University of Tokyo.
    17. Gunnar Eskeland & Torben Mideksa, 2010. "Electricity demand in a changing climate," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 15(8), pages 877-897, December.
    18. Maximilian Auffhammer & Anin Aroonruengsawat, 2011. "Simulating the impacts of climate change, prices and population on California’s residential electricity consumption," Climatic Change, Springer, vol. 109(1), pages 191-210, December.
    19. Davis, Lucas W. & Martinez, Sebastian & Taboada, Bibiana, 2020. "How effective is energy-efficient housing? Evidence from a field trial in Mexico," Journal of Development Economics, Elsevier, vol. 143(C).
    20. Aydin, Erdal, 2016. "Energy conservation in the residential sector : The role of policy and market forces," Other publications TiSEM b9cedba8-1310-4097-90fb-b, Tilburg University, School of Economics and Management.

    More about this item

    Keywords

    Energy-efficiency; Hierarchical estimation; CO 2 emissions; C13; Q41; Q48; Q54;
    All these keywords.

    JEL classification:

    • C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General
    • Q41 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Demand and Supply; Prices
    • Q48 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Government Policy
    • Q54 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Climate; Natural Disasters and their Management; Global Warming

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:envpol:v:15:y:2013:i:3:p:271-290. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.