IDEAS home Printed from https://ideas.repec.org/a/spr/endesu/v24y2022i3d10.1007_s10668-021-01595-7.html
   My bibliography  Save this article

Smoke and mirrors—the complexities of cookstove adoption and use in Kenya

Author

Listed:
  • Edwina Fingleton-Smith

    (The Australian National University)

Abstract

Despite much research on the topic, persistent difficulties remain around the adoption of modern cookstoves. This study aims to increase understandings of the complex decision making processes behind stove and fuel choice and identify barriers and opportunities to facilitate transitions to improved cookstoves. Taking an inductive, explorative approach to gather rich detail, in-depth interviews were conducted with 75 urban and rural people in Kenya which were then analyzed using adaptive theory to determine key issues. The study found the better off urban respondents all engaged a cookstove stacking approach, but contrary to previous understandings, this was less about an unwillingness to give up a traditional stove than it was a result of only being able to afford modern fuels for some of their cooking needs. They would then ration out the use of a modern stove to the meals when the perceived benefits of the stove were most in need, such as speed during busy periods, and use the traditional stove to fill in the gaps more cheaply. People in the poorer, rural group were very optimistic about the process of moving to modern stoves and fuels but completely unable to afford them. These findings indicate that price rather than preference is the dominant factor to the purchase and continued use of modern cookstoves. The paper frames these results to reemphasize the need to address price barriers of modern cookstoves, through subsidization, to facilitate increased adoption rates among the poorest users.

Suggested Citation

  • Edwina Fingleton-Smith, 2022. "Smoke and mirrors—the complexities of cookstove adoption and use in Kenya," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(3), pages 3926-3946, March.
  • Handle: RePEc:spr:endesu:v:24:y:2022:i:3:d:10.1007_s10668-021-01595-7
    DOI: 10.1007/s10668-021-01595-7
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10668-021-01595-7
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10668-021-01595-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Khandelwal, Meena & Hill, Matthew E. & Greenough, Paul & Anthony, Jerry & Quill, Misha & Linderman, Marc & Udaykumar, H.S., 2017. "Why Have Improved Cook-Stove Initiatives in India Failed?," World Development, Elsevier, vol. 92(C), pages 13-27.
    2. Ruiz-Mercado, Ilse & Masera, Omar & Zamora, Hilda & Smith, Kirk R., 2011. "Adoption and sustained use of improved cookstoves," Energy Policy, Elsevier, vol. 39(12), pages 7557-7566.
    3. World Bank, 2017. "Atlas of Sustainable Development Goals 2017," World Bank Publications - Books, The World Bank Group, number 26306.
    4. Hosier, Richard H. & Dowd, Jeffrey, 1987. "Household fuel choice in Zimbabwe : An empirical test of the energy ladder hypothesis," Resources and Energy, Elsevier, vol. 9(4), pages 347-361, December.
    5. Limmeechokchai, Bundit & Chawana, Saichit, 2007. "Sustainable energy development strategies in the rural Thailand: The case of the improved cooking stove and the small biogas digester," Renewable and Sustainable Energy Reviews, Elsevier, vol. 11(5), pages 818-837, June.
    6. Masera, Omar R. & Saatkamp, Barbara D. & Kammen, Daniel M., 2000. "From Linear Fuel Switching to Multiple Cooking Strategies: A Critique and Alternative to the Energy Ladder Model," World Development, Elsevier, vol. 28(12), pages 2083-2103, December.
    7. Jessica Cohen & Pascaline Dupas, 2010. "Free Distribution or Cost-Sharing? Evidence from a Randomized Malaria Prevention Experiment," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 125(1), pages 1-45.
    8. Jeuland, Marc & Tan Soo, Jie-Sheng & Shindell, Drew, 2018. "The need for policies to reduce the costs of cleaner cooking in low income settings: Implications from systematic analysis of costs and benefits," Energy Policy, Elsevier, vol. 121(C), pages 275-285.
    9. Kshirsagar, Milind P. & Kalamkar, Vilas R., 2014. "A comprehensive review on biomass cookstoves and a systematic approach for modern cookstove design," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 580-603.
    10. Maes, Wouter H. & Verbist, Bruno, 2012. "Increasing the sustainability of household cooking in developing countries: Policy implications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(6), pages 4204-4221.
    11. Troncoso, Karin & Castillo, Alicia & Masera, Omar & Merino, Leticia, 2007. "Social perceptions about a technological innovation for fuelwood cooking: Case study in rural Mexico," Energy Policy, Elsevier, vol. 35(5), pages 2799-2810, May.
    12. Unknown, 2016. "Energy for Sustainable Development," Conference Proceedings 253270, Guru Arjan Dev Institute of Development Studies (IDSAsr).
    13. Smith, Kirk R. & Sagar, Ambuj, 2014. "Making the clean available: Escaping India’s Chulha Trap," Energy Policy, Elsevier, vol. 75(C), pages 410-414.
    14. Troncoso, Karin & Soares da Silva, Agnes, 2017. "LPG fuel subsidies in Latin America and the use of solid fuels to cook," Energy Policy, Elsevier, vol. 107(C), pages 188-196.
    15. Bielecki, Christopher & Wingenbach, Gary, 2014. "Rethinking improved cookstove diffusion programs: A case study of social perceptions and cooking choices in rural Guatemala," Energy Policy, Elsevier, vol. 66(C), pages 350-358.
    16. Leach, Gerald, 1992. "The energy transition," Energy Policy, Elsevier, vol. 20(2), pages 116-123, February.
    17. Sovacool, Benjamin K. & Kryman, Matthew & Smith, Taylor, 2015. "Scaling and commercializing mobile biogas systems in Kenya: A qualitative pilot study," Renewable Energy, Elsevier, vol. 76(C), pages 115-125.
    18. Banerjee, Manjushree & Prasad, Rakesh & Rehman, Ibrahim H & Gill, Bigsna, 2016. "Induction stoves as an option for clean cooking in rural India," Energy Policy, Elsevier, vol. 88(C), pages 159-167.
    19. Rohan R. Pande & Vilas R. Kalamkar & Milind Kshirsagar, 2019. "Making the popular clean: improving the traditional multipot biomass cookstove in Maharashtra, India," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 21(3), pages 1391-1410, June.
    20. Atteridge, Aaron & Weitz, Nina, 2017. "A political economy perspective on technology innovation in the Kenyan clean cookstove sector," Energy Policy, Elsevier, vol. 110(C), pages 303-312.
    21. Jan, Inayatullah, 2012. "What makes people adopt improved cookstoves? Empirical evidence from rural northwest Pakistan," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 3200-3205.
    22. Manoj Kumar, & Sachin Kumar, & Tyagi, S.K., 2013. "Design, development and technological advancement in the biomass cookstoves: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 26(C), pages 265-285.
    23. Sesan, Temilade, 2014. "What's cooking? Evaluating context-responsive approaches to stove technology development in Nigeria and Kenya," Technology in Society, Elsevier, vol. 39(C), pages 142-150.
    24. Sesan, Temilade, 2012. "Navigating the limitations of energy poverty: Lessons from the promotion of improved cooking technologies in Kenya," Energy Policy, Elsevier, vol. 47(C), pages 202-210.
    25. Mehetre, Sonam A. & Panwar, N.L. & Sharma, Deepak & Kumar, Himanshu, 2017. "Improved biomass cookstoves for sustainable development: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 672-687.
    26. van der Kroon, Bianca & Brouwer, Roy & van Beukering, Pieter J.H., 2014. "The impact of the household decision environment on fuel choice behavior," Energy Economics, Elsevier, vol. 44(C), pages 236-247.
    27. Han, Hongyun & Wu, Shu & Zhang, Zhijian, 2018. "Factors underlying rural household energy transition: A case study of China," Energy Policy, Elsevier, vol. 114(C), pages 234-244.
    28. Heltberg, Rasmus, 2005. "Factors determining household fuel choice in Guatemala," Environment and Development Economics, Cambridge University Press, vol. 10(3), pages 337-361, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Abdul-Wahab Tahiru & Samuel Jerry Cobbina & Wilhemina Asare & Silas Uwumborge Takal, 2024. "Unlocking Energy from Waste: A Comprehensive Analysis of Municipal Solid Waste Recovery Potential in Ghana," World, MDPI, vol. 5(2), pages 1-27, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Malla, Sunil & Timilsina, Govinda R, 2014. "Household cooking fuel choice and adoption of improved cookstoves in developing countries : a review," Policy Research Working Paper Series 6903, The World Bank.
    2. Karanja, Alice & Gasparatos, Alexandros, 2019. "Adoption and impacts of clean bioenergy cookstoves in Kenya," Renewable and Sustainable Energy Reviews, Elsevier, vol. 102(C), pages 285-306.
    3. Gould, Carlos F. & Urpelainen, Johannes, 2018. "LPG as a clean cooking fuel: Adoption, use, and impact in rural India," Energy Policy, Elsevier, vol. 122(C), pages 395-408.
    4. Han, Hongyun & Wu, Shu, 2018. "Rural residential energy transition and energy consumption intensity in China," Energy Economics, Elsevier, vol. 74(C), pages 523-534.
    5. Hongyun Han & Shu Wu, 2019. "Determinants of the Behavioral Lock-in of Rural Residents’ Direct Biomass Energy Consumption in China," Sustainability, MDPI, vol. 11(2), pages 1-25, January.
    6. Calzada, Joan & Sanz, Alex, 2018. "Universal access to clean cookstoves: Evaluation of a public program in Peru," Energy Policy, Elsevier, vol. 118(C), pages 559-572.
    7. Jan, Inayatullah & Lohano, Heman Das, 2021. "Uptake of energy efficient cookstoves in Pakistan," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    8. Muller, Christophe & Yan, Huijie, 2018. "Household fuel use in developing countries: Review of theory and evidence," Energy Economics, Elsevier, vol. 70(C), pages 429-439.
    9. Gupta, Ridhima & Pelli, Martino, 2021. "Electrification and cooking fuel choice in rural India," World Development, Elsevier, vol. 146(C).
    10. Thacker, Kendall S. & Barger, K. McCall & Mattson, Christopher A., 2017. "Balancing technical and user objectives in the redesign of a peruvian cookstove," Development Engineering, Elsevier, vol. 2(C), pages 12-19.
    11. Chen, Feifei & Qiu, Huanguang & Zhang, Jun, 2022. "Energy consumption and income of the poor in rural China: Inference for poverty measures," Energy Policy, Elsevier, vol. 163(C).
    12. Gelo, Dambala & Kollamparambil, Umakrishnan & Jeuland, Marc, 2023. "The causal effect of income on household energy transition: Evidence from old age pension eligibility in South Africa," Energy Economics, Elsevier, vol. 119(C).
    13. Gill-Wiehl, A. & Ray, I. & Kammen, D., 2021. "Is clean cooking affordable? A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    14. Ujjayant Chakravorty & Ridhima Gupta & Martino Pelli, 2022. "The economics of rural energy use in developing countries," CIRANO Working Papers 2022s-12, CIRANO.
    15. Vania Vigolo & Rezarta Sallaku & Federico Testa, 2018. "Drivers and Barriers to Clean Cooking: A Systematic Literature Review from a Consumer Behavior Perspective," Sustainability, MDPI, vol. 10(11), pages 1-21, November.
    16. Sutar, Kailasnath B. & Kohli, Sangeeta & Ravi, M.R. & Ray, Anjan, 2015. "Biomass cookstoves: A review of technical aspects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 1128-1166.
    17. Han, Hongyun & Wu, Shu & Zhang, Zhijian, 2018. "Factors underlying rural household energy transition: A case study of China," Energy Policy, Elsevier, vol. 114(C), pages 234-244.
    18. Lindgren, Samantha, 2021. "Cookstove implementation and Education for Sustainable Development: A review of the field and proposed research agenda," Renewable and Sustainable Energy Reviews, Elsevier, vol. 146(C).
    19. MacCarty, Nordica A. & Bryden, Kenneth Mark, 2016. "An integrated systems model for energy services in rural developing communities," Energy, Elsevier, vol. 113(C), pages 536-557.
    20. Ahmed Moustapha Mfokeu & Elie Virgile Chrysostome & Jean-Pierre Gueyie & Olivier Ebenezer Mun Ngapna, 2023. "Consumer Motivation behind the Use of Ecological Charcoal in Cameroon," Sustainability, MDPI, vol. 15(3), pages 1-22, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:endesu:v:24:y:2022:i:3:d:10.1007_s10668-021-01595-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.