IDEAS home Printed from https://ideas.repec.org/a/spr/endesu/v23y2021i2d10.1007_s10668-020-00679-0.html
   My bibliography  Save this article

Research on the sustainable development process of low-carbon pilot cities: the case study of Guiyang, a low-carbon pilot city in south-west China

Author

Listed:
  • Tao Peng

    (Central South University
    Guizhou Institute of Technology)

  • Hongwei Deng

    (Central South University)

Abstract

China plans to pursue low-carbon development in its low-carbon pilot cities to control greenhouse gas emissions. The low-carbon city development is an important method to achieve sustainable development strategy, while it is also a new city development mode to promote natural ecology, low-carbon economy and social happiness. However, the evaluation process of the low-carbon city is a multiple objective and decision problem. A single indicator cannot comprehensively and objectively evaluate a city’s low-carbon development level, so a comprehensive evaluation index system should be established. So taking Guiyang as a case study, this article constructs 35 evaluating indicators that are based on the basic urban development level and low-carbon urban development level to analyse the economic development, social progress and environmental quality transmutation comprehensively by using the entropy method. The results show that in the whole process of sustainable development, the economic development, social progress and the environmental quality have been greatly improved, but the low-carbon level had been on the low side from 2003 to 2016 in Guiyang. Therefore, Guiyang still has a long way to go to become a low-carbon city, and concrete policies and countermeasures should be taken to promote the low-carbon level. In particular, Guiyang has to strengthen the dual constraint of carbon emission intensity and total carbon emissions, adhere to the development path characterized by low carbon and strive to achieve leapfrog development.

Suggested Citation

  • Tao Peng & Hongwei Deng, 2021. "Research on the sustainable development process of low-carbon pilot cities: the case study of Guiyang, a low-carbon pilot city in south-west China," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(2), pages 2382-2403, February.
  • Handle: RePEc:spr:endesu:v:23:y:2021:i:2:d:10.1007_s10668-020-00679-0
    DOI: 10.1007/s10668-020-00679-0
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10668-020-00679-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10668-020-00679-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ying QU & Yue LIU, 2017. "Evaluating the low-carbon development of urban China," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 19(3), pages 939-953, June.
    2. Xiangsheng Dou & Huanying Cui, 2017. "Low-carbon society creation and socio-economic structural transition in China," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 19(5), pages 1577-1599, October.
    3. Changjian Wang & Fei Wang, 2015. "Structural Decomposition Analysis of Carbon Emissions and Policy Recommendations for Energy Sustainability in Xinjiang," Sustainability, MDPI, vol. 7(6), pages 1-20, June.
    4. Fang, Kai & Dong, Liang & Ren, Jingzheng & Zhang, Qifeng & Han, Ling & Fu, Huizhen, 2017. "Carbon footprints of urban transition: Tracking circular economy promotions in Guiyang, China," Ecological Modelling, Elsevier, vol. 365(C), pages 30-44.
    5. Abubakar Hamid Danlami & Shri-Dewi Applanaidu & Rabiul Islam, 2018. "Movement towards a low carbon emitted environment: a test of some factors in Malaysia," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 20(3), pages 1085-1102, June.
    6. Zhenghong Tang & Samuel Brody & Courtney Quinn & Liang Chang & Ting Wei, 2010. "Moving from agenda to action: evaluating local climate change action plans," Journal of Environmental Planning and Management, Taylor & Francis Journals, vol. 53(1), pages 41-62.
    7. Axel Baeumler & Ede Ijjasz-Vasquez & Shomik Mehndiratta, 2012. "Sustainable Low-Carbon City Development in China," World Bank Publications - Books, The World Bank Group, number 12330, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wen, Shibin & Liu, Hongman, 2022. "Research on energy conservation and carbon emission reduction effects and mechanism: Quasi-experimental evidence from China," Energy Policy, Elsevier, vol. 169(C).
    2. Prerna Joshi & N. Siva Siddaiah, 2021. "Carbon dioxide dynamics of Bhalswa Lake: a human-impacted urban wetland of Delhi, India," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(12), pages 18116-18142, December.
    3. Li Zhu & Chen Wang & Ning Huang & Yu Fu & Zhexing Yan, 2022. "Developing an Indicator System to Monitor City’s Sustainability Integrated Local Governance: A Case Study in Zhangjiakou," Sustainability, MDPI, vol. 14(9), pages 1-19, April.
    4. Yuan Su & Ziyu Miao & Chanjuan Wang, 2022. "The Experience and Enlightenment of Asian Smart City Development—A Comparative Study of China and Japan," Sustainability, MDPI, vol. 14(6), pages 1-20, March.
    5. Zhang Chenghu & Muhammad Arif & Khurram Shehzad & Mahmood Ahmad & Judit Oláh, 2021. "Modeling the Dynamic Linkage between Tourism Development, Technological Innovation, Urbanization and Environmental Quality: Provincial Data Analysis of China," IJERPH, MDPI, vol. 18(16), pages 1-21, August.
    6. Hunjra, Ahmed Imran & Hassan, M. Kabir & Zaied, Younes Ben & Managi, Shunsuke, 2023. "Nexus between green finance, environmental degradation, and sustainable development: Evidence from developing countries," Resources Policy, Elsevier, vol. 81(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tao Peng & Zhiyuan Jin & Lujun Xiao, 2022. "Evaluating low-carbon competitiveness under a DPSIR-Game Theory-TOPSIS model—A case study," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(4), pages 5962-5990, April.
    2. Garfield Wayne Hunter & Gideon Sagoe & Daniele Vettorato & Ding Jiayu, 2019. "Sustainability of Low Carbon City Initiatives in China: A Comprehensive Literature Review," Sustainability, MDPI, vol. 11(16), pages 1-37, August.
    3. Zhaojun Yang & Xiaoting Guo & Jun Sun & Yali Zhang, 2021. "Contextual and organizational factors in sustainable supply chain decision making: grey relational analysis and interpretative structural modeling," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(8), pages 12056-12076, August.
    4. Huang, Jingchang & Zhao, Jing & Cao, June, 2021. "Environmental regulation and corporate R&D investment—evidence from a quasi-natural experiment," International Review of Economics & Finance, Elsevier, vol. 72(C), pages 154-174.
    5. Azevedo, I. & Leal, V., 2021. "A new model for ex-post quantification of the effects of local actions for climate change mitigation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    6. Wang, Rui & Yuan, Quan, 2013. "Parking practices and policies under rapid motorization: The case of China," Transport Policy, Elsevier, vol. 30(C), pages 109-116.
    7. Manal Ayyad Dhif Alshammry & Saqib Muneer, 2023. "The influence of economic development, capital formation, and internet use on environmental degradation in Saudi Arabia," Future Business Journal, Springer, vol. 9(1), pages 1-16, December.
    8. Du, Xiaoyun & Meng, Conghui & Guo, Zhenhua & Yan, Hang, 2023. "An improved approach for measuring the efficiency of low carbon city practice in China," Energy, Elsevier, vol. 268(C).
    9. Vincent Wretling & Berit Balfors, 2021. "Building Institutional Capacity to Plan for Climate Neutrality: The Role of Local Co-Operation and Inter-Municipal Networks at the Regional Level," Sustainability, MDPI, vol. 13(4), pages 1-19, February.
    10. Krause, Rachel M., 2012. "The impact of municipal governments' renewable electricity use on greenhouse gas emissions in the United States," Energy Policy, Elsevier, vol. 47(C), pages 246-253.
    11. Jun Wang & Zhuofei Liu & Long Shi & Jinghua Tan, 2022. "The Impact of Low-Carbon Pilot City Policy on Corporate Green Technology Innovation in a Sustainable Development Context—Evidence from Chinese Listed Companies," Sustainability, MDPI, vol. 14(17), pages 1-23, September.
    12. Debora Sotto & Arlindo Philippi & Tan Yigitcanlar & Md Kamruzzaman, 2019. "Aligning Urban Policy with Climate Action in the Global South: Are Brazilian Cities Considering Climate Emergency in Local Planning Practice?," Energies, MDPI, vol. 12(18), pages 1-31, September.
    13. Qiao Hu & Zhenghong Tang & Lei Zhang & Yuanyuan Xu & Xiaolin Wu & Ligang Zhang, 2018. "Evaluating climate change adaptation efforts on the US 50 states’ hazard mitigation plans," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 92(2), pages 783-804, June.
    14. Wojuola, Rosemary N. & Alant, Busisiwe P., 2019. "Sustainable development and energy education in Nigeria," Renewable Energy, Elsevier, vol. 139(C), pages 1366-1374.
    15. Xinlin Zhang & Yuan Zhao & Qi Sun & Changjian Wang, 2017. "Decomposition and Attribution Analysis of Industrial Carbon Intensity Changes in Xinjiang, China," Sustainability, MDPI, vol. 9(3), pages 1-16, March.
    16. Asghari, M. & Afshari, H. & Jaber, M.Y. & Searcy, C., 2023. "Credibility-based cascading approach to achieve net-zero emissions in energy symbiosis networks using an Organic Rankine Cycle," Applied Energy, Elsevier, vol. 340(C).
    17. Saidia Ali & Farid Shirazi, 2022. "A Transformer-Based Machine Learning Approach for Sustainable E-Waste Management: A Comparative Policy Analysis between the Swiss and Canadian Systems," Sustainability, MDPI, vol. 14(20), pages 1-22, October.
    18. Zhang, Lipeng & Gudmundsson, Oddgeir & Thorsen, Jan Eric & Li, Hongwei & Li, Xiaopeng & Svendsen, Svend, 2016. "Method for reducing excess heat supply experienced in typical Chinese district heating systems by achieving hydraulic balance and improving indoor air temperature control at the building level," Energy, Elsevier, vol. 107(C), pages 431-442.
    19. Ying Qu & Yue Liu & Wenhua Wang & Yaodong Cang, 2021. "Sustainability assessment of urban residential consumption in China megacity," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(5), pages 7509-7523, May.
    20. Angela Neves & Radu Godina & Susana G. Azevedo & João C. O. Matias, 2019. "Current Status, Emerging Challenges, and Future Prospects of Industrial Symbiosis in Portugal," Sustainability, MDPI, vol. 11(19), pages 1-23, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:endesu:v:23:y:2021:i:2:d:10.1007_s10668-020-00679-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.