IDEAS home Printed from https://ideas.repec.org/a/spr/empeco/v35y2008i2p395-412.html
   My bibliography  Save this article

The absolute health income hypothesis revisited: a semiparametric quantile regression approach

Author

Listed:
  • Yiguo Sun
  • Thanasis Stengos

Abstract

This paper uses the 1998-99 Canadian National Population Health Survey (NPHS) data to examine the health-income relationship that underlies the absolute income hypothesis. To allow for nonlinearity and data heterogeneity, we use a partially linear semiparametric quantile regression model. Among more than dozen of socioeconomic variables, we find that family income, age and the food security status are the most important factors in explaining an individual’s overall functional health. The “absolute income hypothesis” is partially true; the negative aging effects appear more pronounced for the ill-healthy population than for the healthy population and when annual income is below 40,000 Canadian dollars.
(This abstract was borrowed from another version of this item.)

Suggested Citation

  • Yiguo Sun & Thanasis Stengos, 2008. "The absolute health income hypothesis revisited: a semiparametric quantile regression approach," Empirical Economics, Springer, vol. 35(2), pages 395-412, September.
  • Handle: RePEc:spr:empeco:v:35:y:2008:i:2:p:395-412
    DOI: 10.1007/s00181-007-0164-z
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s00181-007-0164-z
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s00181-007-0164-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Newey, Whitney K & Powell, James L & Walker, James R, 1990. "Semiparametric Estimation of Selection Models: Some Empirical Results," American Economic Review, American Economic Association, vol. 80(2), pages 324-328, May.
    2. Zellner, Arnold & Highfield, Richard A., 1988. "Calculation of maximum entropy distributions and approximation of marginalposterior distributions," Journal of Econometrics, Elsevier, vol. 37(2), pages 195-209, February.
    3. Gallant, A. Ronald, 1981. "On the bias in flexible functional forms and an essentially unbiased form : The fourier flexible form," Journal of Econometrics, Elsevier, vol. 15(2), pages 211-245, February.
    4. Williamson, Deanna L., 2000. "Health behaviours and health: evidence that the relationship is not conditional on income adequacy," Social Science & Medicine, Elsevier, vol. 51(12), pages 1741-1754, December.
    5. Linton, Oliver, 1993. "Adaptive Estimation in ARCH Models," Econometric Theory, Cambridge University Press, vol. 9(4), pages 539-569, August.
    6. Wu, Ximing & Perloff, Jeffrey M., 2007. "GMM estimation of a maximum entropy distribution with interval data," Journal of Econometrics, Elsevier, vol. 138(2), pages 532-546, June.
    7. Grossman, Michael, 1972. "On the Concept of Health Capital and the Demand for Health," Journal of Political Economy, University of Chicago Press, vol. 80(2), pages 223-255, March-Apr.
    8. Rosenberg, Mark W. & Wilson, Kathleen, 2000. "Gender, poverty and location: how much difference do they make in the geography of health inequalities?," Social Science & Medicine, Elsevier, vol. 51(2), pages 275-287, July.
    9. Contoyannis, Paul & Forster, Martin, 1999. "The distribution of health and income: a theoretical framework," Journal of Health Economics, Elsevier, vol. 18(5), pages 603-620, October.
    10. Wu, Ximing, 2003. "Calculation of maximum entropy densities with application to income distribution," Journal of Econometrics, Elsevier, vol. 115(2), pages 347-354, August.
    11. Newey, Whitney K., 1988. "Adaptive estimation of regression models via moment restrictions," Journal of Econometrics, Elsevier, vol. 38(3), pages 301-339, July.
    12. Steigerwald, Douglas G., 1992. "On the finite sample behavior of adaptive estimators," Journal of Econometrics, Elsevier, vol. 54(1-3), pages 371-400.
    13. Lee, Sokbae, 2003. "Efficient Semiparametric Estimation Of A Partially Linear Quantile Regression Model," Econometric Theory, Cambridge University Press, vol. 19(1), pages 1-31, February.
    14. Hall, Peter & Wolff, Rodney C. L. & Yao, Qiwei, 1999. "Methods for estimating a conditional distribution function," LSE Research Online Documents on Economics 6631, London School of Economics and Political Science, LSE Library.
    15. Koenker, Roger W & Bassett, Gilbert, Jr, 1978. "Regression Quantiles," Econometrica, Econometric Society, vol. 46(1), pages 33-50, January.
    16. Khan, Shakeeb & Powell, James L., 2001. "Two-step estimation of semiparametric censored regression models," Journal of Econometrics, Elsevier, vol. 103(1-2), pages 73-110, July.
    17. Greene, William H., 1990. "A Gamma-distributed stochastic frontier model," Journal of Econometrics, Elsevier, vol. 46(1-2), pages 141-163.
    18. Li, Qi & Stengos, Thanasis, 1994. "Adaptive Estimation in the Panel Data Error Component Model with Heteroskedasticity of Unknown Form," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 35(4), pages 981-1000, November.
    19. McDonald, James B., 1989. "Partially adaptive estimation of ARMA time series models," International Journal of Forecasting, Elsevier, vol. 5(2), pages 217-230.
    20. Yiguo Sun, 2005. "Semiparametric Efficient Estimation of Partially Linear Quantile Regression Models," Annals of Economics and Finance, Society for AEF, vol. 6(1), pages 105-127, May.
    21. Zheng, John Xu, 1998. "A Consistent Nonparametric Test Of Parametric Regression Models Under Conditional Quantile Restrictions," Econometric Theory, Cambridge University Press, vol. 14(1), pages 123-138, February.
    22. Dalén, Jörgen, 1987. "Algebraic bounds on standardized sample moments," Statistics & Probability Letters, Elsevier, vol. 5(5), pages 329-331, August.
    23. repec:cup:etheor:v:9:y:1993:i:4:p:539-69 is not listed on IDEAS
    24. Anonymous, 1958. "World Health Organization," International Organization, Cambridge University Press, vol. 12(3), pages 391-394, July.
    25. McDonald, James B. & Newey, Whitney K., 1988. "Partially Adaptive Estimation of Regression Models via the Generalized T Distribution," Econometric Theory, Cambridge University Press, vol. 4(3), pages 428-457, December.
    26. Christensen, Laurits R & Greene, William H, 1976. "Economies of Scale in U.S. Electric Power Generation," Journal of Political Economy, University of Chicago Press, vol. 84(4), pages 655-676, August.
    27. Aigner, Dennis & Lovell, C. A. Knox & Schmidt, Peter, 1977. "Formulation and estimation of stochastic frontier production function models," Journal of Econometrics, Elsevier, vol. 6(1), pages 21-37, July.
    28. Phillips, Robert F., 1994. "Partially adaptive estimation via a normal mixture," Journal of Econometrics, Elsevier, vol. 64(1-2), pages 123-144.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Thanasis Stengos & Ximing Wu, 2010. "Information-Theoretic Distribution Test with Application to Normality," Econometric Reviews, Taylor & Francis Journals, vol. 29(3), pages 307-329.
    2. Ignacio Moral-Arce & Stefan Sperlich & Ana Fernández-Saínz & Maria Roca, 2012. "Trends in the Gender Pay Gap in Spain: A Semiparametric Analysis," Journal of Labor Research, Springer, vol. 33(2), pages 173-195, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ximing Wu & Thanasis Stengos, 2005. "Partially adaptive estimation via the maximum entropy densities," Econometrics Journal, Royal Economic Society, vol. 8(3), pages 352-366, December.
    2. Dimitrios Bakas & Theodore Panagiotidis & Gianluigi Pelloni, 2024. "Labour reallocation and unemployment fluctuations: A tale of two tails," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 29(3), pages 3444-3468, July.
    3. Thanasis Stengos & Ximing Wu, 2010. "Information-Theoretic Distribution Test with Application to Normality," Econometric Reviews, Taylor & Francis Journals, vol. 29(3), pages 307-329.
    4. Theodore Panagiotidis & Georgios Papapanagiotou, 2024. "A note on the determinants of NFTs returns," Working Paper series 24-07, Rimini Centre for Economic Analysis.
    5. Sun, Yiguo, 2006. "A Consistent Nonparametric Equality Test Of Conditional Quantile Functions," Econometric Theory, Cambridge University Press, vol. 22(4), pages 614-632, August.
    6. Ramirez, Octavio A., 2001. "Autoregressive Conditional Heteroskedasticy Under Error-Term Non-Normality," 2001 Annual meeting, August 5-8, Chicago, IL 20595, American Agricultural Economics Association (New Name 2008: Agricultural and Applied Economics Association).
    7. Fan, Yanqin & Liu, Ruixuan, 2016. "A direct approach to inference in nonparametric and semiparametric quantile models," Journal of Econometrics, Elsevier, vol. 191(1), pages 196-216.
    8. William Griffiths & Xiaohui Zhang & Xueyan Zhao, 2010. "A Stochastic Frontier Model for Discrete Ordinal Outcomes: A Health Production Function," Department of Economics - Working Papers Series 1092, The University of Melbourne.
    9. Fong, Wai Mun, 1997. "Robust beta estimation: Some empirical evidence," Review of Financial Economics, Elsevier, vol. 6(2), pages 167-186.
    10. Wu, Ximing & Perloff, Jeffrey M., 2007. "Information-Theoretic Deconvolution Approximation of Treatment Effect Distribution," Department of Agricultural & Resource Economics, UC Berkeley, Working Paper Series qt9vd036zx, Department of Agricultural & Resource Economics, UC Berkeley.
    11. repec:wvu:wpaper:10-09 is not listed on IDEAS
    12. van den Broeck, Julien & Koop, Gary & Osiewalski, Jacek & Steel, Mark F. J., 1994. "Stochastic frontier models : A Bayesian perspective," Journal of Econometrics, Elsevier, vol. 61(2), pages 273-303, April.
    13. Alexander D. Stead & Phill Wheat & William H. Greene, 2023. "On hypothesis testing in latent class and finite mixture stochastic frontier models, with application to a contaminated normal-half normal model," Journal of Productivity Analysis, Springer, vol. 60(1), pages 37-48, August.
    14. Papadopoulos, Alecos & Parmeter, Christopher F., 2021. "Type II failure and specification testing in the Stochastic Frontier Model," European Journal of Operational Research, Elsevier, vol. 293(3), pages 990-1001.
    15. Koop, Gary & Osiewalski, Jacek & Steel, Mark F J, 1994. "Bayesian Efficiency Analysis with a Flexible Form: The AIM Cost Function," Journal of Business & Economic Statistics, American Statistical Association, vol. 12(3), pages 339-346, July.
    16. Jim Griffin & Mark Steel, 2007. "Bayesian stochastic frontier analysis using WinBUGS," Journal of Productivity Analysis, Springer, vol. 27(3), pages 163-176, June.
    17. Steven Caudill, 2012. "A partially adaptive estimator for the censored regression model based on a mixture of normal distributions," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 21(2), pages 121-137, June.
    18. Randall A. Lewis & James B. McDonald, 2014. "Partially Adaptive Estimation of the Censored Regression Model," Econometric Reviews, Taylor & Francis Journals, vol. 33(7), pages 732-750, October.
    19. William Greene, 2003. "Simulated Likelihood Estimation of the Normal-Gamma Stochastic Frontier Function," Journal of Productivity Analysis, Springer, vol. 19(2), pages 179-190, April.
    20. William C. Horrace & Yulong Wang, 2022. "Nonparametric tests of tail behavior in stochastic frontier models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(3), pages 537-562, April.
    21. Xiaofeng Lv & Rui Li, 2013. "Smoothed empirical likelihood analysis of partially linear quantile regression models with missing response variables," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 97(4), pages 317-347, October.

    More about this item

    Keywords

    Absolute income hypothesis; Partially linear quantile regression model; C14; C51; I12;
    All these keywords.

    JEL classification:

    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General
    • C51 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Construction and Estimation
    • I12 - Health, Education, and Welfare - - Health - - - Health Behavior

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:empeco:v:35:y:2008:i:2:p:395-412. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.