IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this paper or follow this series

Partially Adaptive Estimation via Maximum Entropy Densities

  • Thanasis Stengos
  • Ximing Wu

We propose a partially adaptive estimator based on information theoretic maximum entropy estimates of the error distribution. The maximum entropy (maxent) densities have simple yet flexible functional forms to nest most of the mathematical distributions. Unlike the nonparametric fully adaptive estimators, our parametric estimators do not involve choosing a bandwidth or trimming, and only require estimating a small number of nuisance parameters, which is desirable when the sample size is small. Monte Carlo simulations suggest that the proposed estimators fare well with non-normal error distributions. When the errors are normal, the efficiency loss due to redundant nuisance parameters is negligible as the proposed error densities nest the normal. The proposed partially adaptive estimator compares favorably with existing methods, especially when the sample size is small. We apply the estimator to a bio-pharmaceutical example and a stochastic frontier model.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: http://papers.econ.ucy.ac.cy/RePEc/papers/7-2005.pdf
Download Restriction: no

Paper provided by University of Cyprus Department of Economics in its series University of Cyprus Working Papers in Economics with number 6-2005.

as
in new window

Length: 25 pages
Date of creation: Oct 2005
Date of revision:
Handle: RePEc:ucy:cypeua:6-2005
Contact details of provider: Web page: http://www.econ.ucy.ac.cy

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Li, Qi & Stengos, Thanasis, 1994. "Adaptive Estimation in the Panel Data Error Component Model with Heteroskedasticity of Unknown Form," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 35(4), pages 981-1000, November.
  2. McDonald, James B., 1989. "Partially adaptive estimation of ARMA time series models," International Journal of Forecasting, Elsevier, vol. 5(2), pages 217-230.
  3. Newey, Whitney K., 1988. "Adaptive estimation of regression models via moment restrictions," Journal of Econometrics, Elsevier, vol. 38(3), pages 301-339, July.
  4. Linton, Oliver, 1993. "Adaptive Estimation in ARCH Models," Econometric Theory, Cambridge University Press, vol. 9(04), pages 539-569, August.
  5. Aigner, Dennis & Lovell, C. A. Knox & Schmidt, Peter, 1977. "Formulation and estimation of stochastic frontier production function models," Journal of Econometrics, Elsevier, vol. 6(1), pages 21-37, July.
  6. Christensen, Laurits R & Greene, William H, 1976. "Economies of Scale in U.S. Electric Power Generation," Journal of Political Economy, University of Chicago Press, vol. 84(4), pages 655-76, August.
  7. Greene, William H., 1990. "A Gamma-distributed stochastic frontier model," Journal of Econometrics, Elsevier, vol. 46(1-2), pages 141-163.
  8. Dalén, Jörgen, 1987. "Algebraic bounds on standardized sample moments," Statistics & Probability Letters, Elsevier, vol. 5(5), pages 329-331, August.
  9. Wu, Ximing, 2003. "Calculation of maximum entropy densities with application to income distribution," Journal of Econometrics, Elsevier, vol. 115(2), pages 347-354, August.
  10. Gallant, A. Ronald, 1981. "On the bias in flexible functional forms and an essentially unbiased form : The fourier flexible form," Journal of Econometrics, Elsevier, vol. 15(2), pages 211-245, February.
  11. Steigerwald, Douglas G., 1992. "On the finite sample behavior of adaptive estimators," Journal of Econometrics, Elsevier, vol. 54(1-3), pages 371-400.
  12. Phillips, Robert F., 1994. "Partially adaptive estimation via a normal mixture," Journal of Econometrics, Elsevier, vol. 64(1-2), pages 123-144.
  13. McDonald, James B. & Newey, Whitney K., 1988. "Partially Adaptive Estimation of Regression Models via the Generalized T Distribution," Econometric Theory, Cambridge University Press, vol. 4(03), pages 428-457, December.
  14. Wu, Ximing & Perloff, Jeffrey M., 2007. "GMM estimation of a maximum entropy distribution with interval data," Journal of Econometrics, Elsevier, vol. 138(2), pages 532-546, June.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:ucy:cypeua:6-2005. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ()

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.