IDEAS home Printed from https://ideas.repec.org/p/ucy/cypeua/6-2005.html
   My bibliography  Save this paper

Partially Adaptive Estimation via Maximum Entropy Densities

Author

Listed:
  • Thanasis Stengos
  • Ximing Wu

Abstract

We propose a partially adaptive estimator based on information theoretic maximum entropy estimates of the error distribution. The maximum entropy (maxent) densities have simple yet flexible functional forms to nest most of the mathematical distributions. Unlike the nonparametric fully adaptive estimators, our parametric estimators do not involve choosing a bandwidth or trimming, and only require estimating a small number of nuisance parameters, which is desirable when the sample size is small. Monte Carlo simulations suggest that the proposed estimators fare well with non-normal error distributions. When the errors are normal, the efficiency loss due to redundant nuisance parameters is negligible as the proposed error densities nest the normal. The proposed partially adaptive estimator compares favorably with existing methods, especially when the sample size is small. We apply the estimator to a bio-pharmaceutical example and a stochastic frontier model.

Suggested Citation

  • Thanasis Stengos & Ximing Wu, 2005. "Partially Adaptive Estimation via Maximum Entropy Densities," University of Cyprus Working Papers in Economics 6-2005, University of Cyprus Department of Economics.
  • Handle: RePEc:ucy:cypeua:6-2005
    as

    Download full text from publisher

    File URL: http://papers.econ.ucy.ac.cy/RePEc/papers/7-2005.pdf
    Download Restriction: no

    References listed on IDEAS

    as
    1. Gallant, A. Ronald, 1981. "On the bias in flexible functional forms and an essentially unbiased form : The fourier flexible form," Journal of Econometrics, Elsevier, vol. 15(2), pages 211-245, February.
    2. Linton, Oliver, 1993. "Adaptive Estimation in ARCH Models," Econometric Theory, Cambridge University Press, vol. 9(04), pages 539-569, August.
    3. Wu, Ximing & Perloff, Jeffrey M., 2007. "GMM estimation of a maximum entropy distribution with interval data," Journal of Econometrics, Elsevier, vol. 138(2), pages 532-546, June.
    4. Wu, Ximing, 2003. "Calculation of maximum entropy densities with application to income distribution," Journal of Econometrics, Elsevier, vol. 115(2), pages 347-354, August.
    5. Newey, Whitney K., 1988. "Adaptive estimation of regression models via moment restrictions," Journal of Econometrics, Elsevier, vol. 38(3), pages 301-339, July.
    6. Steigerwald, Douglas G., 1992. "On the finite sample behavior of adaptive estimators," Journal of Econometrics, Elsevier, vol. 54(1-3), pages 371-400.
    7. Greene, William H., 1990. "A Gamma-distributed stochastic frontier model," Journal of Econometrics, Elsevier, vol. 46(1-2), pages 141-163.
    8. Li, Qi & Stengos, Thanasis, 1994. "Adaptive Estimation in the Panel Data Error Component Model with Heteroskedasticity of Unknown Form," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 35(4), pages 981-1000, November.
    9. McDonald, James B., 1989. "Partially adaptive estimation of ARMA time series models," International Journal of Forecasting, Elsevier, vol. 5(2), pages 217-230.
    10. Dalén, Jörgen, 1987. "Algebraic bounds on standardized sample moments," Statistics & Probability Letters, Elsevier, vol. 5(5), pages 329-331, August.
    11. McDonald, James B. & Newey, Whitney K., 1988. "Partially Adaptive Estimation of Regression Models via the Generalized T Distribution," Econometric Theory, Cambridge University Press, vol. 4(03), pages 428-457, December.
    12. Christensen, Laurits R & Greene, William H, 1976. "Economies of Scale in U.S. Electric Power Generation," Journal of Political Economy, University of Chicago Press, vol. 84(4), pages 655-676, August.
    13. Aigner, Dennis & Lovell, C. A. Knox & Schmidt, Peter, 1977. "Formulation and estimation of stochastic frontier production function models," Journal of Econometrics, Elsevier, vol. 6(1), pages 21-37, July.
    14. Phillips, Robert F., 1994. "Partially adaptive estimation via a normal mixture," Journal of Econometrics, Elsevier, vol. 64(1-2), pages 123-144.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Thanasis Stengos & Ximing Wu, 2010. "Information-Theoretic Distribution Test with Application to Normality," Econometric Reviews, Taylor & Francis Journals, pages 307-329.
    2. repec:rim:rimwps:24-07 is not listed on IDEAS
    3. Usta, Ilhan & Kantar, Yeliz Mert, 2011. "On the performance of the flexible maximum entropy distributions within partially adaptive estimation," Computational Statistics & Data Analysis, Elsevier, vol. 55(6), pages 2172-2182, June.
    4. Rompolis, Leonidas S., 2010. "Retrieving risk neutral densities from European option prices based on the principle of maximum entropy," Journal of Empirical Finance, Elsevier, vol. 17(5), pages 918-937, December.
    5. Steven Caudill & James Long, 2010. "Do former athletes make better managers? Evidence from a partially adaptive grouped-data regression model," Empirical Economics, Springer, vol. 39(1), pages 275-290, August.
    6. Katherine G. Yewell & Steven B. Caudill & Franklin G. Mixon, Jr., 2014. "Referee Bias and Stoppage Time in Major League Soccer: A Partially Adaptive Approach," Econometrics, MDPI, Open Access Journal, vol. 2(1), pages 1-19, February.
    7. Wu, Ximing & Perloff, Jeffrey M., 2005. "GMM Estimation of a Maximum Distribution With Interval Data," Institute for Research on Labor and Employment, Working Paper Series qt7jf5w1ht, Institute of Industrial Relations, UC Berkeley.
    8. Steven Caudill, 2012. "A partially adaptive estimator for the censored regression model based on a mixture of normal distributions," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 21(2), pages 121-137, June.
    9. Pendharkar, Parag C., 2008. "Maximum entropy and least square error minimizing procedures for estimating missing conditional probabilities in Bayesian networks," Computational Statistics & Data Analysis, Elsevier, vol. 52(7), pages 3583-3602, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ucy:cypeua:6-2005. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (). General contact details of provider: http://www.ucy.ac.cy/econ/en .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.