IDEAS home Printed from https://ideas.repec.org/a/spr/ediscc/v8y2024i1d10.1007_s41885-024-00143-7.html
   My bibliography  Save this article

Technology Use, Maize Productivity, and Weather in West Africa

Author

Listed:
  • Prince M. Etwire

    (CSIR-Savanna Agricultural Research Institute)

  • David Fielding

    (University of Manchester)

  • Edward Martey

    (CSIR-Savanna Agricultural Research Institute)

Abstract

This paper presents estimates of the association between maize yield and weather using survey data from Ghana, Mali and Nigeria, allowing for the possibility that farmers’ choices about agricultural technology may themselves depend on weather. We find that the association between yield and weather varies substantially according to these choices. We then use our estimates to forecast the change in yield under alternative weather change scenarios. All of these scenarios envisage an increase in temperature, but some envisage a rise in rainfall while others envisage a fall. In almost all scenarios, there is a substantial fall in productivity. In the absence of adaptation measures, weather change is likely to substantially reduce farm income in all three countries.

Suggested Citation

  • Prince M. Etwire & David Fielding & Edward Martey, 2024. "Technology Use, Maize Productivity, and Weather in West Africa," Economics of Disasters and Climate Change, Springer, vol. 8(1), pages 129-155, March.
  • Handle: RePEc:spr:ediscc:v:8:y:2024:i:1:d:10.1007_s41885-024-00143-7
    DOI: 10.1007/s41885-024-00143-7
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s41885-024-00143-7
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s41885-024-00143-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kelvin Mulungu & Gelson Tembo & Hilary Bett & Hambulo Ngoma, 2021. "Climate change and crop yields in Zambia: historical effects and future projections," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(8), pages 11859-11880, August.
    2. Yonas Alem & Mintewab Bezabih & Menale Kassie & Precious Zikhali, 2010. "Does fertilizer use respond to rainfall variability? Panel data evidence from Ethiopia," Agricultural Economics, International Association of Agricultural Economists, vol. 41(2), pages 165-175, March.
    3. Terence Epule Epule & Christopher Robin Bryant, 2014. "Maize Production Responsiveness to Land Use Change and Climate Trends in Cameroon," Sustainability, MDPI, vol. 7(1), pages 1-14, December.
    4. Salvatore Di Falco & Marcella Veronesi & Mahmud Yesuf, 2011. "Does Adaptation to Climate Change Provide Food Security? A Micro-Perspective from Ethiopia," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 93(3), pages 825-842.
    5. Weeks, M. & Orne, C., 1999. "The Statistical Relationship between Bivariate and Multinomial Choice Models," Cambridge Working Papers in Economics 9912, Faculty of Economics, University of Cambridge.
    6. Paswel P. Marenya & Christopher B. Barrett, 2009. "Soil quality and fertilizer use rates among smallholder farmers in western Kenya," Agricultural Economics, International Association of Agricultural Economists, vol. 40(5), pages 561-572, September.
    7. Joshua D. Angrist & Jörn-Steffen Pischke, 2009. "Mostly Harmless Econometrics: An Empiricist's Companion," Economics Books, Princeton University Press, edition 1, number 8769.
    8. Ephraim Nkonya & Ted Schroeder & David Norman, 1997. "Factors Affecting Adoption Of Improved Maize Seed And Fertiliser In Northern Tanzania," Journal of Agricultural Economics, Wiley Blackwell, vol. 48(1‐3), pages 1-12, January.
    9. Thierry Coulibaly & Moinul Islam & Shunsuke Managi, 2020. "The Impacts of Climate Change and Natural Disasters on Agriculture in African Countries," Economics of Disasters and Climate Change, Springer, vol. 4(2), pages 347-364, July.
    10. Astrid Mastenbroek & Irma Sirutyte & Robert Sparrow, 2021. "Information Barriers to Adoption of Agricultural Technologies: Willingness to Pay for Certified Seed of an Open Pollinated Maize Variety in Northern Uganda," Journal of Agricultural Economics, Wiley Blackwell, vol. 72(1), pages 180-201, February.
    11. N. Sounders & Tata Sunjo & Mojoko Mbella, 2017. "Effects of Rainfall and Temperature Oscillations on Maize Yields in Buea Sub-Division, Cameroon," Journal of Agricultural Science, Canadian Center of Science and Education, vol. 9(2), pages 1-63, January.
    12. Mekbib G. Haile & Tesfamicheal Wossen & Kindie Tesfaye & Joachim von Braun, 2017. "Impact of Climate Change, Weather Extremes, and Price Risk on Global Food Supply," Economics of Disasters and Climate Change, Springer, vol. 1(1), pages 55-75, June.
    13. Marenya, Paswel Phiri & Barrett, Christopher B., 2009. "The effect of soil quality on fertilizer use rates among smallholder farmers in western Kenya," 2009 Conference, August 16-22, 2009, Beijing, China 51671, International Association of Agricultural Economists.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Larson, Donald F. & Gurara, Daniel Zerfu, 2013. "A conceptual model of incomplete markets and the consequences for technology adoption policies in Ethiopia," Policy Research Working Paper Series 6681, The World Bank.
    2. Hasibuan, Abdul Muis & Gregg, Daniel & Stringer, Randy, 2022. "Risk preferences, intra-household dynamics and spatial effects on chemical inputs use: Case of small-scale citrus farmers in Indonesia," Land Use Policy, Elsevier, vol. 122(C).
    3. Mugizi, Francisco M.P. & Matsumoto, Tomoya, 2021. "A curse or a blessing? Population pressure and soil quality in Sub-Saharan Africa: Evidence from rural Uganda," Ecological Economics, Elsevier, vol. 179(C).
    4. Hassen, Sied, 2018. "The effect of farmyard manure on the continued and discontinued use of inorganic fertilizer in Ethiopia: An ordered probit analysis," Land Use Policy, Elsevier, vol. 72(C), pages 523-532.
    5. Denise Hörner & Meike Wollni, 2022. "Does integrated soil fertility management increase returns to land and labor?: Plot‐level evidence from Ethiopia," Agricultural Economics, International Association of Agricultural Economists, vol. 53(3), pages 337-355, May.
    6. Hongyun Zheng & Wanglin Ma & Gucheng Li, 2021. "Adoption of organic soil amendments and its impact on farm performance: evidence from wheat farmers in China," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 65(2), pages 367-390, April.
    7. Abebe, Meseret B. & Alem, Yonas, 2023. "Drought, Livestock Holding, and Milk Production: A Difference-in-Differences Analysis," EfD Discussion Paper 23-12, Environment for Development, University of Gothenburg.
    8. Mintewab Bezabih & Remidius Ruhinduka & Mare Sarr, 2016. "Climate change perception and system of rice intensification (SRI) impact on dispersion and downside risk: a moment approximation approach," GRI Working Papers 256, Grantham Research Institute on Climate Change and the Environment.
    9. Catherine Ragasa & Antony Chapoto, 2017. "Moving in the right direction? The role of price subsidies in fertilizer use and maize productivity in Ghana," Food Security: The Science, Sociology and Economics of Food Production and Access to Food, Springer;The International Society for Plant Pathology, vol. 9(2), pages 329-353, April.
    10. Ragasa, Catherine & Chapoto, Antony, 2016. "Limits to green revolution in rice in Africa: The case of Ghana," IFPRI discussion papers 1561, International Food Policy Research Institute (IFPRI).
    11. Mugizi, Francisco M.P. & Matsumoto, Tomoya, 2020. "Population pressure and soil quality in Sub-Saharan Africa: Panel evidence from Kenya," Land Use Policy, Elsevier, vol. 94(C).
    12. Villegas, Laura & Smith, Vincent H. & Atwood, Joe & Belasco, Eric, 2016. "Does Participation In Public Works Programs Encourage Fertilizer Use In Rural Ethiopia?," International Journal of Food and Agricultural Economics (IJFAEC), Alanya Alaaddin Keykubat University, Department of Economics and Finance, vol. 4(2), pages 1-24, April.
    13. Awudu Abdulai, 2023. "Information acquisition and the adoption of improved crop varieties," American Journal of Agricultural Economics, John Wiley & Sons, vol. 105(4), pages 1049-1062, August.
    14. Arne Henningsen & Guy Low & David Wuepper & Tobias Dalhaus & Hugo Storm & Dagim Belay & Stefan Hirsch, 2024. "Estimating Causal Effects with Observational Data: Guidelines for Agricultural and Applied Economists," IFRO Working Paper 2024/03, University of Copenhagen, Department of Food and Resource Economics.
    15. Charlotte Fabri & Sam Vermeulen & Steven Van Passel & Sergei Schaub, 2024. "Crop diversification and the effect of weather shocks on Italian farmers' income and income risk," Journal of Agricultural Economics, Wiley Blackwell, vol. 75(3), pages 955-980, September.
    16. Mathenge, Mary K. & Smale, Melinda & Olwande, John, 2012. "The Impact of Maize Hybrids on Income, Poverty, and Inequality among Smallholder Farmers in Kenya," Food Security International Development Working Papers 146931, Michigan State University, Department of Agricultural, Food, and Resource Economics.
    17. Berazneva, Julia & McBride, Linden & Sheahan, Megan & Güereña, David, 2018. "Empirical assessment of subjective and objective soil fertility metrics in east Africa: Implications for researchers and policy makers," World Development, Elsevier, vol. 105(C), pages 367-382.
    18. Jeremy Foltz & Ursula Aldana & Paul Laris, 2014. "The Sahel's Silent Maize Revolution: Analyzing Maize Productivity in Mali at the Farm Level," NBER Chapters, in: African Successes, Volume IV: Sustainable Growth, pages 111-136, National Bureau of Economic Research, Inc.
    19. Lenis Saweda O. Liverpool-Tasie, 2017. "Is fertiliser use inconsistent with expected profit maximization in sub-Saharan Africa? “Evidence from Nigeria”," Journal of Agricultural Economics, Wiley Blackwell, vol. 68(1), pages 22-44, February.
    20. Genova, Christian & Umberger, Wendy J. & Peralta-Sanchez, Maria-Alexandra & Newman, Suzie & Zeng, Di, 2021. "The Impact of Smallholder Vegetable Production on Rural Vietnamese Children’s Nutrition Outcomes," 2021 Conference, August 17-31, 2021, Virtual 315293, International Association of Agricultural Economists.

    More about this item

    Keywords

    Weather; Technology use; Maize productivity; West Africa;
    All these keywords.

    JEL classification:

    • C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General
    • C31 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Cross-Sectional Models; Spatial Models; Treatment Effect Models; Quantile Regressions; Social Interaction Models
    • Q12 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Agriculture - - - Micro Analysis of Farm Firms, Farm Households, and Farm Input Markets
    • Q54 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Climate; Natural Disasters and their Management; Global Warming

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:ediscc:v:8:y:2024:i:1:d:10.1007_s41885-024-00143-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.