IDEAS home Printed from https://ideas.repec.org/a/spr/dyngam/v3y2013i4p446-472.html
   My bibliography  Save this article

A Mean Field Capital Accumulation Game with HARA Utility

Author

Listed:
  • Minyi Huang

    ()

Abstract

This paper introduces a mean field modeling framework for consumption-accumulation optimization. The production dynamics are generalized from stochastic growth theory by addressing the collective impact of a large population of similar agents on efficiency. This gives rise to a stochastic dynamic game with mean field coupling in the dynamics, where we adopt a hyperbolic absolute risk aversion (HARA) utility functional for the agents. A set of decentralized strategies is obtained by using the Nash certainty equivalence approach. To examine the long-term behavior we introduce a notion called the relaxed stationary mean field solution. The simple strategy computed from this solution is used to investigate the out-of-equilibrium behavior of the mean field system. Interesting nonlinear phenomena can emerge, including stable equilibria, limit cycles and chaos, which are related to the agent’s sensitivity to the mean field. Copyright Springer Science+Business Media New York 2013

Suggested Citation

  • Minyi Huang, 2013. "A Mean Field Capital Accumulation Game with HARA Utility," Dynamic Games and Applications, Springer, vol. 3(4), pages 446-472, December.
  • Handle: RePEc:spr:dyngam:v:3:y:2013:i:4:p:446-472
    DOI: 10.1007/s13235-013-0092-9
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s13235-013-0092-9
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lambson, Val Eugene, 1984. "Self-enforcing collusion in large dynamic markets," Journal of Economic Theory, Elsevier, vol. 34(2), pages 282-291, December.
    2. Askenazy, Philippe & Le Van, Cuong, 1999. "A Model of Optimal Growth Strategy," Journal of Economic Theory, Elsevier, vol. 85(1), pages 24-51, March.
    3. Gabriel Y. Weintraub & C. Lanier Benkard & Benjamin Van Roy, 2008. "Markov Perfect Industry Dynamics With Many Firms," Econometrica, Econometric Society, vol. 76(6), pages 1375-1411, November.
    4. Jovanovic, Boyan & Rosenthal, Robert W., 1988. "Anonymous sequential games," Journal of Mathematical Economics, Elsevier, vol. 17(1), pages 77-87, February.
    5. Amir, Rabah, 1996. "Continuous Stochastic Games of Capital Accumulation with Convex Transitions," Games and Economic Behavior, Elsevier, vol. 15(2), pages 111-131, August.
    6. Łukasz Balbus & Andrzej S. Nowak, 2004. "Construction of Nash equilibria in symmetric stochastic games of capital accumulation," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 60(2), pages 267-277, October.
    7. Olson, Lars J. & Roy, Santanu, 2000. "Dynamic Efficiency of Conservation of Renewable Resources under Uncertainty," Journal of Economic Theory, Elsevier, vol. 95(2), pages 186-214, December.
    8. Brock, William A. & Mirman, Leonard J., 1972. "Optimal economic growth and uncertainty: The discounted case," Journal of Economic Theory, Elsevier, vol. 4(3), pages 479-513, June.
    9. Dockner, Engelbert J. & Nishimura, Kazuo, 2005. "Capital accumulation games with a non-concave production function," Journal of Economic Behavior & Organization, Elsevier, vol. 57(4), pages 408-420, August.
    10. Robert J. Barro & Xavier Sala-I-Martin, 1992. "Public Finance in Models of Economic Growth," Review of Economic Studies, Oxford University Press, vol. 59(4), pages 645-661.
    11. repec:spr:compst:v:60:y:2004:i:2:p:267-277 is not listed on IDEAS
    12. Mendelssohn, Roy & Sobel, Matthew J., 1980. "Capital accumulation and the optimization of renewable resource models," Journal of Economic Theory, Elsevier, vol. 23(2), pages 243-260, October.
    13. Merton, Robert C, 1969. "Lifetime Portfolio Selection under Uncertainty: The Continuous-Time Case," The Review of Economics and Statistics, MIT Press, vol. 51(3), pages 247-257, August.
    14. R. Buckdahn & P. Cardaliaguet & M. Quincampoix, 2011. "Some Recent Aspects of Differential Game Theory," Dynamic Games and Applications, Springer, vol. 1(1), pages 74-114, March.
    15. Jerusalem D. Levhari & T. N. Srinivasan, 1969. "Optimal Savings under Uncertainty," Review of Economic Studies, Oxford University Press, vol. 36(2), pages 153-163.
    16. Day, Richard H, 1982. "Irregular Growth Cycles," American Economic Review, American Economic Association, vol. 72(3), pages 406-414, June.
    17. Liu, Wen-Fang & Turnovsky, Stephen J., 2005. "Consumption externalities, production externalities, and long-run macroeconomic efficiency," Journal of Public Economics, Elsevier, vol. 89(5-6), pages 1097-1129, June.
    18. repec:dau:papers:123456789/6046 is not listed on IDEAS
    19. Duffie, Darrell & Fleming, Wendell & Soner, H. Mete & Zariphopoulou, Thaleia, 1997. "Hedging in incomplete markets with HARA utility," Journal of Economic Dynamics and Control, Elsevier, vol. 21(4-5), pages 753-782, May.
    Full references (including those not matched with items on IDEAS)

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:dyngam:v:3:y:2013:i:4:p:446-472. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Sonal Shukla) or (Rebekah McClure). General contact details of provider: http://www.springer.com .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.