IDEAS home Printed from https://ideas.repec.org/a/spr/dyngam/v15y2025i1d10.1007_s13235-024-00582-7.html
   My bibliography  Save this article

Integration of Sales and Operations: A Dynamic Mixed-Integer Programming Game

Author

Listed:
  • Claudio Telha

    (Universidad de los Andes, Chile)

  • Margarida Carvalho

    (Université de Montréal)

Abstract

We define a framework to investigate and assess the impact of prompt and dynamic reactions to market competition in production planning problems. It depicts two firms that produce and sell substitutable products over a finite time horizon. Each firm optimizes its sales and production costs, and has sufficient market power to affect the sales of the other firm. The framework can capture several production and market competition features. We model production plans using mixed-integer programs and market competition using sequential Stackelberg games. Under certain conditions, we can solve the models in our framework in polynomial-time. We provide examples to illustrate how the framework can match the requirements of production planning and sales. Then, we perform a computational study to analyze a planning problem that features the possibility of technological investments to reduce the variable production costs. We draw insights on the value of our polynomial-time method to compute subgame perfect equilibria by comparing its optimal production plans against a static model, where firms fix the entire production plan at the beginning of the planning horizon, and a myopic model, where firms ignore the impact that current decisions will have in future periods.

Suggested Citation

  • Claudio Telha & Margarida Carvalho, 2025. "Integration of Sales and Operations: A Dynamic Mixed-Integer Programming Game," Dynamic Games and Applications, Springer, vol. 15(1), pages 306-328, March.
  • Handle: RePEc:spr:dyngam:v:15:y:2025:i:1:d:10.1007_s13235-024-00582-7
    DOI: 10.1007/s13235-024-00582-7
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s13235-024-00582-7
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s13235-024-00582-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Awi Federgruen & Ming Hu, 2015. "Multi-Product Price and Assortment Competition," Operations Research, INFORMS, vol. 63(3), pages 572-584, June.
    2. Aram G. Sogomonian & Christopher S. Tang, 1993. "A Modeling Framework for Coordinating Promotion and Production Decisions within a Firm," Management Science, INFORMS, vol. 39(2), pages 191-203, February.
    3. Heuvel, Wilco van den & Borm, Peter & Hamers, Herbert, 2007. "Economic lot-sizing games," European Journal of Operational Research, Elsevier, vol. 176(2), pages 1117-1130, January.
    4. von Stengel, Bernhard, 1996. "Efficient Computation of Behavior Strategies," Games and Economic Behavior, Elsevier, vol. 14(2), pages 220-246, June.
    5. Li, Hongyan & Meissner, Joern, 2011. "Competition under capacitated dynamic lot-sizing with capacity acquisition," International Journal of Production Economics, Elsevier, vol. 131(2), pages 535-544, June.
    6. Peter Borm & Herbert Hamers & Ruud Hendrickx, 2001. "Operations research games: A survey," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 9(2), pages 139-199, December.
    7. BARANY, Imre & VAN ROY, Tony J. & WOLSEY, Laurence A., 1984. "Strong formulations for multi-item capacitated lot sizing," LIDAM Reprints CORE 590, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    8. François Vanderbeck, 1998. "Lot-Sizing with Start-Up Times," Management Science, INFORMS, vol. 44(10), pages 1409-1425, October.
    9. Carvalho, Margarida & Lodi, Andrea & Pedroso, João.P., 2022. "Computing equilibria for integer programming games," European Journal of Operational Research, Elsevier, vol. 303(3), pages 1057-1070.
    10. Nadjib Brahimi & Stéphane Dauzère-Pérès & Najib M. Najid, 2006. "Capacitated Multi-Item Lot-Sizing Problems with Time Windows," Operations Research, INFORMS, vol. 54(5), pages 951-967, October.
    11. Bergantinos, Gustavo & Vidal-Puga, Juan J., 2007. "A fair rule in minimum cost spanning tree problems," Journal of Economic Theory, Elsevier, vol. 137(1), pages 326-352, November.
    12. Awi Federgruen & Joern Meissner, 2009. "Competition under time‐varying demands and dynamic lot sizing costs," Naval Research Logistics (NRL), John Wiley & Sons, vol. 56(1), pages 57-73, February.
    13. Aksen, Deniz & Altinkemer, Kemal & Chand, Suresh, 2003. "The single-item lot-sizing problem with immediate lost sales," European Journal of Operational Research, Elsevier, vol. 147(3), pages 558-566, June.
    14. Willard I. Zangwill, 1966. "A Deterministic Multi-Period Production Scheduling Model with Backlogging," Management Science, INFORMS, vol. 13(1), pages 105-119, September.
    15. ANILY, Shoshana & TZUR, Michal & WOLSEY, Laurence A., 2009. "Multi-item lot-sizing with joint set-up costs," LIDAM Reprints CORE 2081, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    16. Gunnar T. Thowsen, 1975. "A dynamic, nonstationary inventory problem for a price/quantity setting firm," Naval Research Logistics Quarterly, John Wiley & Sons, vol. 22(3), pages 461-476, September.
    17. Guardiola, Luis A. & Meca, Ana & Puerto, Justo, 2009. "Production-inventory games: A new class of totally balanced combinatorial optimization games," Games and Economic Behavior, Elsevier, vol. 65(1), pages 205-219, January.
    18. Lamas, Alejandro & Chevalier, Philippe, 2018. "Joint dynamic pricing and lot-sizing under competition," European Journal of Operational Research, Elsevier, vol. 266(3), pages 864-876.
    19. Rasulkhani, Saeid & Chow, Joseph Y.J., 2019. "Route-cost-assignment with joint user and operator behavior as a many-to-one stable matching assignment game," Transportation Research Part B: Methodological, Elsevier, vol. 124(C), pages 60-81.
    20. Akbalik, Ayse & Penz, Bernard, 2009. "Exact methods for single-item capacitated lot sizing problem with alternative machines and piece-wise linear production costs," International Journal of Production Economics, Elsevier, vol. 119(2), pages 367-379, June.
    21. Imre Barany & Tony J. Van Roy & Laurence A. Wolsey, 1984. "Strong Formulations for Multi-Item Capacitated Lot Sizing," Management Science, INFORMS, vol. 30(10), pages 1255-1261, October.
    22. Koller, Daphne & Megiddo, Nimrod, 1996. "Finding Mixed Strategies with Small Supports in Extensive Form Games," International Journal of Game Theory, Springer;Game Theory Society, vol. 25(1), pages 73-92.
    23. Carvalho, Margarida & Pedroso, João Pedro & Telha, Claudio & Van Vyve, Mathieu, 2018. "Competitive uncapacitated lot-sizing game," International Journal of Production Economics, Elsevier, vol. 204(C), pages 148-159.
    24. Hamers, Herbert & Borm, Peter & van de Leensel, Robert & Tijs, Stef, 1999. "Cost allocation in the Chinese postman problem," European Journal of Operational Research, Elsevier, vol. 118(1), pages 153-163, October.
    25. Andrew J. Miller & Laurence A. Wolsey, 2003. "Tight Mip Formulation for Multi-Item Discrete Lot-Sizing Problems," Operations Research, INFORMS, vol. 51(4), pages 557-565, August.
    26. Kovcs, Andrs & Brown, Kenneth N. & Tarim, S. Armagan, 2009. "An efficient MIP model for the capacitated lot-sizing and scheduling problem with sequence-dependent setups," International Journal of Production Economics, Elsevier, vol. 118(1), pages 282-291, March.
    27. Peter C. Bell & Jing Chen, 2017. "Close integration of pricing and supply chain decisions has strategic as well as operations level benefits," Annals of Operations Research, Springer, vol. 257(1), pages 77-93, October.
    28. Gaetan Belvaux & Laurence A. Wolsey, 2001. "Modelling Practical Lot-Sizing Problems as Mixed-Integer Programs," Management Science, INFORMS, vol. 47(7), pages 993-1007, July.
    29. Okhrin, Irena & Richter, Knut, 2011. "The linear dynamic lot size problem with minimum order quantity," International Journal of Production Economics, Elsevier, vol. 133(2), pages 688-693, October.
    30. VAN VYVE, Mathieu & WOLSEY, Laurence A & YAMAN, Hande, 2014. "Relaxations for two-level multi-item lot-sizing problems," LIDAM Reprints CORE 2611, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    31. VAN VYVE, Mathieu, 2006. "Linear-programming extended formulations for the single-item lot-sizing problem with backlogging and constant capacity," LIDAM Reprints CORE 1855, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    32. Matthias Köppe & Christopher Thomas Ryan & Maurice Queyranne, 2011. "Rational Generating Functions and Integer Programming Games," Operations Research, INFORMS, vol. 59(6), pages 1445-1460, December.
    33. BELVAUX, Gaetan & WOLSEY, Laurence A., 2001. "Modelling practical lot-sizing problems as mixed-integer programs," LIDAM Reprints CORE 1516, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    34. Joseph Thomas, 1970. "Price-Production Decisions with Deterministic Demand," Management Science, INFORMS, vol. 16(11), pages 747-750, July.
    35. Mathieu Van Vyve, 2007. "Algorithms for Single-Item Lot-Sizing Problems with Constant Batch Size," Mathematics of Operations Research, INFORMS, vol. 32(3), pages 594-613, August.
    36. Awi Federgruen & Michal Tzur, 1993. "The dynamic lot‐sizing model with backlogging: A simple o(n log n) algorithm and minimal forecast horizon procedure," Naval Research Logistics (NRL), John Wiley & Sons, vol. 40(4), pages 459-478, June.
    37. Abhijit Upasani & Reha Uzsoy, 2008. "Incorporating manufacturing lead times in joint production-marketing models: A review and some future directions," Annals of Operations Research, Springer, vol. 161(1), pages 171-188, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kerem Akartunalı & Ioannis Fragkos & Andrew J. Miller & Tao Wu, 2016. "Local Cuts and Two-Period Convex Hull Closures for Big-Bucket Lot-Sizing Problems," INFORMS Journal on Computing, INFORMS, vol. 28(4), pages 766-780, November.
    2. Jans, Raf & Degraeve, Zeger, 2007. "Meta-heuristics for dynamic lot sizing: A review and comparison of solution approaches," European Journal of Operational Research, Elsevier, vol. 177(3), pages 1855-1875, March.
    3. Brahimi, Nadjib & Absi, Nabil & Dauzère-Pérès, Stéphane & Nordli, Atle, 2017. "Single-item dynamic lot-sizing problems: An updated survey," European Journal of Operational Research, Elsevier, vol. 263(3), pages 838-863.
    4. Kis, Tamás & Kovács, András, 2013. "Exact solution approaches for bilevel lot-sizing," European Journal of Operational Research, Elsevier, vol. 226(2), pages 237-245.
    5. Kerem Akartunalı & Andrew Miller, 2012. "A computational analysis of lower bounds for big bucket production planning problems," Computational Optimization and Applications, Springer, vol. 53(3), pages 729-753, December.
    6. Francesco Gaglioppa & Lisa A. Miller & Saif Benjaafar, 2008. "Multitask and Multistage Production Planning and Scheduling for Process Industries," Operations Research, INFORMS, vol. 56(4), pages 1010-1025, August.
    7. Luis A. Guardiola & Ana Meca & Justo Puerto, 2021. "Unitary Owen Points in Cooperative Lot-Sizing Models with Backlogging," Mathematics, MDPI, vol. 9(8), pages 1-19, April.
    8. Degraeve, Z. & Jans, R.F., 2003. "A New Dantzig-Wolfe Reformulation And Branch-And-Price Algorithm For The Capacitated Lot Sizing Problem With Set Up Times," ERIM Report Series Research in Management ERS-2003-010-LIS, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
    9. Zeger Degraeve & Raf Jans, 2007. "A New Dantzig-Wolfe Reformulation and Branch-and-Price Algorithm for the Capacitated Lot-Sizing Problem with Setup Times," Operations Research, INFORMS, vol. 55(5), pages 909-920, October.
    10. Rizk, Nafee & Martel, Alain & Ramudhin, Amar, 2006. "A Lagrangean relaxation algorithm for multi-item lot-sizing problems with joint piecewise linear resource costs," International Journal of Production Economics, Elsevier, vol. 102(2), pages 344-357, August.
    11. Karimi, B. & Fatemi Ghomi, S. M. T. & Wilson, J. M., 2003. "The capacitated lot sizing problem: a review of models and algorithms," Omega, Elsevier, vol. 31(5), pages 365-378, October.
    12. Eksioglu, Sandra Duni, 2009. "A primal-dual algorithm for the economic lot-sizing problem with multi-mode replenishment," European Journal of Operational Research, Elsevier, vol. 197(1), pages 93-101, August.
    13. Andrea Raiconi & Julia Pahl & Monica Gentili & Stefan Voß & Raffaele Cerulli, 2017. "Tactical Production and Lot Size Planning with Lifetime Constraints: A Comparison of Model Formulations," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 34(05), pages 1-24, October.
    14. AkartunalI, Kerem & Miller, Andrew J., 2009. "A heuristic approach for big bucket multi-level production planning problems," European Journal of Operational Research, Elsevier, vol. 193(2), pages 396-411, March.
    15. Absi, Nabil & Kedad-Sidhoum, Safia, 2008. "The multi-item capacitated lot-sizing problem with setup times and shortage costs," European Journal of Operational Research, Elsevier, vol. 185(3), pages 1351-1374, March.
    16. Moo-Sung Sohn & Jiwoong Choi & Hoseog Kang & In-Chan Choi, 2017. "Multiobjective Production Planning at LG Display," Interfaces, INFORMS, vol. 47(4), pages 279-291, August.
    17. Luis A. Guardiola & Ana Meca & Justo Puerto, 2022. "The effect of consolidated periods in heterogeneous lot-sizing games," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 30(2), pages 380-404, July.
    18. Chung-Lun Li & Qingying Li, 2016. "Polynomial-Time Solvability of Dynamic Lot Size Problems," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 33(03), pages 1-20, June.
    19. Doostmohammadi, Mahdi & Akartunalı, Kerem, 2018. "Valid inequalities for two-period relaxations of big-bucket lot-sizing problems: Zero setup case," European Journal of Operational Research, Elsevier, vol. 267(1), pages 86-95.
    20. Laurence A. Wolsey, 2002. "Solving Multi-Item Lot-Sizing Problems with an MIP Solver Using Classification and Reformulation," Management Science, INFORMS, vol. 48(12), pages 1587-1602, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:dyngam:v:15:y:2025:i:1:d:10.1007_s13235-024-00582-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.