IDEAS home Printed from https://ideas.repec.org/a/spr/coopap/v62y2015i2p323-346.html
   My bibliography  Save this article

Globally convergent evolution strategies for constrained optimization

Author

Listed:
  • Y. Diouane
  • S. Gratton
  • L. Vicente

Abstract

In this paper we propose, analyze, and test algorithms for constrained optimization when no use of derivatives of the objective function is made. The proposed methodology is built upon the globally convergent evolution strategies previously introduced by the authors for unconstrained optimization. Two approaches are encompassed to handle the constraints. In a first approach, feasibility is first enforced by a barrier function and the objective function is then evaluated directly at the feasible generated points. A second approach projects first all the generated points onto the feasible domain before evaluating the objective function. The resulting algorithms enjoy favorable global convergence properties (convergence to stationarity from arbitrary starting points), regardless of the linearity of the constraints. The algorithmic implementation (i) includes a step where previously evaluated points are used to accelerate the search (by minimizing quadratic models) and (ii) addresses the particular cases of bounds on the variables and linear constraints. Our solver is compared to others, and the numerical results confirm its competitiveness in terms of efficiency and robustness. Copyright Springer Science+Business Media New York 2015

Suggested Citation

  • Y. Diouane & S. Gratton & L. Vicente, 2015. "Globally convergent evolution strategies for constrained optimization," Computational Optimization and Applications, Springer, vol. 62(2), pages 323-346, November.
  • Handle: RePEc:spr:coopap:v:62:y:2015:i:2:p:323-346
    DOI: 10.1007/s10589-015-9747-3
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10589-015-9747-3
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10589-015-9747-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Luis Rios & Nikolaos Sahinidis, 2013. "Derivative-free optimization: a review of algorithms and comparison of software implementations," Journal of Global Optimization, Springer, vol. 56(3), pages 1247-1293, July.
    2. L. Ingber & B. Rosen, 1992. "Genetic algorithms and very fast simulated reannealing: A comparison," Lester Ingber Papers 92ga, Lester Ingber.
    3. I. D. Coope & C. J. Price, 2000. "Frame Based Methods for Unconstrained Optimization," Journal of Optimization Theory and Applications, Springer, vol. 107(2), pages 261-274, November.
    4. A. Custódio & H. Rocha & L. Vicente, 2010. "Incorporating minimum Frobenius norm models in direct search," Computational Optimization and Applications, Springer, vol. 46(2), pages 265-278, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Youssef Diouane & Victor Picheny & Rodolophe Le Riche & Alexandre Scotto Di Perrotolo, 2023. "TREGO: a trust-region framework for efficient global optimization," Journal of Global Optimization, Springer, vol. 86(1), pages 1-23, May.
    2. S. Gratton & C. W. Royer & L. N. Vicente & Z. Zhang, 2019. "Direct search based on probabilistic feasible descent for bound and linearly constrained problems," Computational Optimization and Applications, Springer, vol. 72(3), pages 525-559, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Árpád Bűrmen & Jernej Olenšek & Tadej Tuma, 2015. "Mesh adaptive direct search with second directional derivative-based Hessian update," Computational Optimization and Applications, Springer, vol. 62(3), pages 693-715, December.
    2. László Pál, 2017. "Empirical study of the improved UNIRANDI local search method," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 25(4), pages 929-952, December.
    3. Jonas Bjerg Thomsen & Francesco Ferri & Jens Peter Kofoed & Kevin Black, 2018. "Cost Optimization of Mooring Solutions for Large Floating Wave Energy Converters," Energies, MDPI, vol. 11(1), pages 1-23, January.
    4. Gabriela Simonet & Julie Subervie & Driss Ezzine-De-Blas & Marina Cromberg & Amy Duchelle, 2015. "Paying smallholders not to cut down the amazon forest: impact evaluation of a REDD+ pilot project," Working Papers 1514, Chaire Economie du climat.
    5. Somayeh Moazeni & Warren B. Powell & Boris Defourny & Belgacem Bouzaiene-Ayari, 2017. "Parallel Nonstationary Direct Policy Search for Risk-Averse Stochastic Optimization," INFORMS Journal on Computing, INFORMS, vol. 29(2), pages 332-349, May.
    6. Bergey, Paul K. & Ragsdale, Cliff, 2005. "Modified differential evolution: a greedy random strategy for genetic recombination," Omega, Elsevier, vol. 33(3), pages 255-265, June.
    7. Benjamin Dyke & Thomas J. Asaki, 2013. "Using QR Decomposition to Obtain a New Instance of Mesh Adaptive Direct Search with Uniformly Distributed Polling Directions," Journal of Optimization Theory and Applications, Springer, vol. 159(3), pages 805-821, December.
    8. Jakubik, Johannes & Binding, Adrian & Feuerriegel, Stefan, 2021. "Directed particle swarm optimization with Gaussian-process-based function forecasting," European Journal of Operational Research, Elsevier, vol. 295(1), pages 157-169.
    9. Mayer, D. G. & Belward, J. A. & Burrage, K., 1996. "Use of advanced techniques to optimize a multi-dimensional dairy model," Agricultural Systems, Elsevier, vol. 50(3), pages 239-253.
    10. Christophe Gouel & Nicolas Legrand, 2017. "Estimating the Competitive Storage Model with Trending Commodity Prices," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 32(4), pages 744-763, June.
    11. Zhao, Jake, 2020. "Accounting for the corporate cash increase," European Economic Review, Elsevier, vol. 123(C).
    12. Hannes Schwarz & Valentin Bertsch & Wolf Fichtner, 2018. "Two-stage stochastic, large-scale optimization of a decentralized energy system: a case study focusing on solar PV, heat pumps and storage in a residential quarter," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 40(1), pages 265-310, January.
    13. L. Ingber, 2018. "Quantum Variables in Finance and Neuroscience," Lester Ingber Papers 18qv, Lester Ingber.
    14. Breitmoser, Yves & Valasek, Justin, 2017. "A rationale for unanimity in committees," Discussion Papers, Research Unit: Economics of Change SP II 2017-308, WZB Berlin Social Science Center.
    15. H. Le Thi & A. Vaz & L. Vicente, 2012. "Optimizing radial basis functions by d.c. programming and its use in direct search for global derivative-free optimization," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 20(1), pages 190-214, April.
    16. A. Sanchez & Diego Martinez, 2011. "Optimization in Non-Standard Problems. An Application to the Provision of Public Inputs," Computational Economics, Springer;Society for Computational Economics, vol. 37(1), pages 13-38, January.
    17. L. Ingber, 2022. "Quantum Variables in Finance," Lester Ingber Papers 22qv, Lester Ingber.
    18. Krese, Gorazd & Lampret, Žiga & Butala, Vincenc & Prek, Matjaž, 2018. "Determination of a Building's balance point temperature as an energy characteristic," Energy, Elsevier, vol. 165(PB), pages 1034-1049.
    19. Tavakol Aghaei, Vahid & Ağababaoğlu, Arda & Bawo, Biram & Naseradinmousavi, Peiman & Yıldırım, Sinan & Yeşilyurt, Serhat & Onat, Ahmet, 2023. "Energy optimization of wind turbines via a neural control policy based on reinforcement learning Markov chain Monte Carlo algorithm," Applied Energy, Elsevier, vol. 341(C).
    20. Victor Lebreton, 2007. "Le trading algorithmique," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) hal-00332823, HAL.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:coopap:v:62:y:2015:i:2:p:323-346. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.