IDEAS home Printed from
MyIDEAS: Log in (now much improved!) to save this article

Mesh adaptive direct search with second directional derivative-based Hessian update

Listed author(s):
  • Árpád Bűrmen


  • Jernej Olenšek
  • Tadej Tuma
Registered author(s):

    The subject of this paper is inequality constrained black-box optimization with mesh adaptive direct search (MADS). The MADS search step can include additional strategies for accelerating the convergence and improving the accuracy of the solution. The strategy proposed in this paper involves building a quadratic model of the function and linear models of the constraints. The quadratic model is built by means of a second directional derivative-based Hessian update. The linear terms are obtained by linear regression. The resulting quadratic programming (QP) problem is solved with a dedicated solver and the original functions are evaluated at the QP solution. The proposed search strategy is computationally less expensive than the quadratically constrained QP strategy in the state of the art MADS implementation (NOMAD). The proposed MADS variant (QPMADS) and NOMAD are compared on four sets of test problems. QPMADS outperforms NOMAD on all four of them for all but the smallest computational budgets. Copyright Springer Science+Business Media New York 2015

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

    File URL:
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

    Article provided by Springer in its journal Computational Optimization and Applications.

    Volume (Year): 62 (2015)
    Issue (Month): 3 (December)
    Pages: 693-715

    in new window

    Handle: RePEc:spr:coopap:v:62:y:2015:i:3:p:693-715
    DOI: 10.1007/s10589-015-9753-5
    Contact details of provider: Web page:

    Order Information: Web:

    References listed on IDEAS
    Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

    in new window

    1. A. Custódio & H. Rocha & L. Vicente, 2010. "Incorporating minimum Frobenius norm models in direct search," Computational Optimization and Applications, Springer, vol. 46(2), pages 265-278, June.
    Full references (including those not matched with items on IDEAS)

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    When requesting a correction, please mention this item's handle: RePEc:spr:coopap:v:62:y:2015:i:3:p:693-715. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Sonal Shukla)

    or (Rebekah McClure)

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.