IDEAS home Printed from https://ideas.repec.org/a/spr/joptap/v107y2000i2d10.1023_a1026429319405.html
   My bibliography  Save this article

Frame Based Methods for Unconstrained Optimization

Author

Listed:
  • I. D. Coope

    (University of Canterbury)

  • C. J. Price

    (University of Canterbury)

Abstract

This paper describes a wide class of direct search methods for unconstrained optimization, which make use of fragments of grids called frames. Convergence is shown under mild conditions which allow successive frames to be rotated, translated, and scaled relative to one another.

Suggested Citation

  • I. D. Coope & C. J. Price, 2000. "Frame Based Methods for Unconstrained Optimization," Journal of Optimization Theory and Applications, Springer, vol. 107(2), pages 261-274, November.
  • Handle: RePEc:spr:joptap:v:107:y:2000:i:2:d:10.1023_a:1026429319405
    DOI: 10.1023/A:1026429319405
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1023/A:1026429319405
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1023/A:1026429319405?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Benjamin Dyke & Thomas J. Asaki, 2013. "Using QR Decomposition to Obtain a New Instance of Mesh Adaptive Direct Search with Uniformly Distributed Polling Directions," Journal of Optimization Theory and Applications, Springer, vol. 159(3), pages 805-821, December.
    2. A. Sanchez & Diego Martinez, 2011. "Optimization in Non-Standard Problems. An Application to the Provision of Public Inputs," Computational Economics, Springer;Society for Computational Economics, vol. 37(1), pages 13-38, January.
    3. C.J. Price & I.D. Coope, 2003. "Frame-Based Ray Search Algorithms in Unconstrained Optimization," Journal of Optimization Theory and Applications, Springer, vol. 116(2), pages 359-377, February.
    4. Ubaldo M. García-Palomares, 2020. "Non-monotone derivative-free algorithm for solving optimization models with linear constraints: extensions for solving nonlinearly constrained models via exact penalty methods," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 28(3), pages 599-625, October.
    5. Javaid Ali & Muhammad Saeed & Muhammad Farhan Tabassam & Shaukat Iqbal, 2019. "Controlled showering optimization algorithm: an intelligent tool for decision making in global optimization," Computational and Mathematical Organization Theory, Springer, vol. 25(2), pages 132-164, June.
    6. Árpád Bűrmen & Jernej Olenšek & Tadej Tuma, 2015. "Mesh adaptive direct search with second directional derivative-based Hessian update," Computational Optimization and Applications, Springer, vol. 62(3), pages 693-715, December.
    7. C.J. Price & I.D. Coope & D. Byatt, 2002. "A Convergent Variant of the Nelder–Mead Algorithm," Journal of Optimization Theory and Applications, Springer, vol. 113(1), pages 5-19, April.
    8. Charles Audet & Christophe Tribes, 2018. "Mesh-based Nelder–Mead algorithm for inequality constrained optimization," Computational Optimization and Applications, Springer, vol. 71(2), pages 331-352, November.
    9. Y. Diouane & S. Gratton & L. Vicente, 2015. "Globally convergent evolution strategies for constrained optimization," Computational Optimization and Applications, Springer, vol. 62(2), pages 323-346, November.
    10. Árpád Bűrmen & Iztok Fajfar, 2019. "Mesh adaptive direct search with simplicial Hessian update," Computational Optimization and Applications, Springer, vol. 74(3), pages 645-667, December.
    11. Benjamin Van Dyke, 2014. "Equal Angle Distribution of Polling Directions in Direct-Search Methods," Journal of Optimization, Hindawi, vol. 2014, pages 1-15, July.
    12. David W. Dreisigmeyer, 2018. "Direct Search Methods on Reductive Homogeneous Spaces," Journal of Optimization Theory and Applications, Springer, vol. 176(3), pages 585-604, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joptap:v:107:y:2000:i:2:d:10.1023_a:1026429319405. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.