IDEAS home Printed from https://ideas.repec.org/a/spr/comaot/v25y2019i2d10.1007_s10588-019-09293-6.html
   My bibliography  Save this article

Controlled showering optimization algorithm: an intelligent tool for decision making in global optimization

Author

Listed:
  • Javaid Ali

    (University of Management and Technology)

  • Muhammad Saeed

    (University of Management and Technology)

  • Muhammad Farhan Tabassam

    (University of Management and Technology)

  • Shaukat Iqbal

    (University of Management and Technology)

Abstract

In this study a novel population based meta-heuristic, called controlled showering optimization (CSO) algorithm, for global optimization of unconstrained problems is presented. Modern irrigation systems are equipped with smart tools manufactured and controlled by human intelligence. The proposed CSO algorithm is inspired from the functioning of water distribution tools to model search agents for carrying out the optimization process. CSO imitates the mechanism of projection of water units by sprinklers and the movements of their platforms to the desired locations for scheming optimum searching procedures. The proposed method has been tested using a number of diverse natured benchmark functions with low and high dimensions. Statistical analysis of the empirical data demonstrates that CSO offers solutions of better quality in comparison with several well-practiced algorithms like genetic algorithm (GA), particle swarm optimization (PSO), differential evolution (DE), artificial bee colony (ABC), covariance matrix adaptation evolution strategy (CMA-ES), teaching and learning based optimization (TLBO) and water cycle algorithm (WCA). The experiments on high-dimensional problems reveal that CSO algorithm also outperforms significantly a number of algorithms designed specifically for high dimensional global optimization problems.

Suggested Citation

  • Javaid Ali & Muhammad Saeed & Muhammad Farhan Tabassam & Shaukat Iqbal, 2019. "Controlled showering optimization algorithm: an intelligent tool for decision making in global optimization," Computational and Mathematical Organization Theory, Springer, vol. 25(2), pages 132-164, June.
  • Handle: RePEc:spr:comaot:v:25:y:2019:i:2:d:10.1007_s10588-019-09293-6
    DOI: 10.1007/s10588-019-09293-6
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10588-019-09293-6
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10588-019-09293-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mostafa Z. Ali & Ayad Salhieh & Randa T. Abu Snanieh & Robert G. Reynolds, 2012. "Boosting cultural algorithms with a heterogeneous layered social fabric influence function," Computational and Mathematical Organization Theory, Springer, vol. 18(2), pages 193-210, June.
    2. Lina Zhang & Liqiang Liu & Xin-She Yang & Yuntao Dai, 2016. "A Novel Hybrid Firefly Algorithm for Global Optimization," PLOS ONE, Public Library of Science, vol. 11(9), pages 1-17, September.
    3. I. D. Coope & C. J. Price, 2000. "Frame Based Methods for Unconstrained Optimization," Journal of Optimization Theory and Applications, Springer, vol. 107(2), pages 261-274, November.
    4. Garg, Harish, 2016. "A hybrid PSO-GA algorithm for constrained optimization problems," Applied Mathematics and Computation, Elsevier, vol. 274(C), pages 292-305.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ali, Javaid & Raza, Ali & Ahmed, Nauman & Ahmadian, Ali & Rafiq, Muhammad & Ferrara, Massimiliano, 2021. "Evolutionary optimized Padé approximation scheme for analysis of covid-19 model with crowding effect," Operations Research Perspectives, Elsevier, vol. 8(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Umesh Balande & Deepti Shrimankar, 2020. "An oracle penalty and modified augmented Lagrangian methods with firefly algorithm for constrained optimization problems," Operational Research, Springer, vol. 20(2), pages 985-1010, June.
    2. Ivona Brajević & Jelena Ignjatović, 2019. "An upgraded firefly algorithm with feasibility-based rules for constrained engineering optimization problems," Journal of Intelligent Manufacturing, Springer, vol. 30(6), pages 2545-2574, August.
    3. Benjamin Dyke & Thomas J. Asaki, 2013. "Using QR Decomposition to Obtain a New Instance of Mesh Adaptive Direct Search with Uniformly Distributed Polling Directions," Journal of Optimization Theory and Applications, Springer, vol. 159(3), pages 805-821, December.
    4. Adane Abebaw Gessesse & Rajashree Mishra & Mitali Madhumita Acharya & Kedar Nath Das, 2020. "Genetic algorithm based fuzzy programming approach for multi-objective linear fractional stochastic transportation problem involving four-parameter Burr distribution," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 11(1), pages 93-109, February.
    5. A. Sanchez & Diego Martinez, 2011. "Optimization in Non-Standard Problems. An Application to the Provision of Public Inputs," Computational Economics, Springer;Society for Computational Economics, vol. 37(1), pages 13-38, January.
    6. Yassin Belkourchia & Mohamed Zeriab Es-Sadek & Lahcen Azrar, 2023. "New Hybrid Perturbed Projected Gradient and Simulated Annealing Algorithms for Global Optimization," Journal of Optimization Theory and Applications, Springer, vol. 197(2), pages 438-475, May.
    7. Touqeer Ahmed Jumani & Mohd Wazir Mustafa & Nawaf N. Hamadneh & Samer H. Atawneh & Madihah Md. Rasid & Nayyar Hussain Mirjat & Muhammad Akram Bhayo & Ilyas Khan, 2020. "Computational Intelligence-Based Optimization Methods for Power Quality and Dynamic Response Enhancement of ac Microgrids," Energies, MDPI, vol. 13(16), pages 1-22, August.
    8. Li, Chao & Zhai, Rongrong & Yang, Yongping & Patchigolla, Kumar & Oakey, John E. & Turner, Peter, 2019. "Annual performance analysis and optimization of a solar tower aided coal-fired power plant," Applied Energy, Elsevier, vol. 237(C), pages 440-456.
    9. Brayan A. Atoccsa & David W. Puma & Daygord Mendoza & Estefany Urday & Cristhian Ronceros & Modesto T. Palma, 2024. "Optimization of Ampacity in High-Voltage Underground Cables with Thermal Backfill Using Dynamic PSO and Adaptive Strategies," Energies, MDPI, vol. 17(5), pages 1-19, February.
    10. Luo, Qifang & Yang, Xiao & Zhou, Yongquan, 2019. "Nature-inspired approach: An enhanced moth swarm algorithm for global optimization," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 159(C), pages 57-92.
    11. Xiang, Shihu & Yang, Jun, 2023. "A novel adaptive deployment method for the single-target tracking of mobile wireless sensor networks," Reliability Engineering and System Safety, Elsevier, vol. 234(C).
    12. Yan, Zheping & Zhang, Jinzhong & Zeng, Jia & Tang, Jialing, 2021. "Nature-inspired approach: An enhanced whale optimization algorithm for global optimization," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 185(C), pages 17-46.
    13. Máximo Méndez & Mariano Frutos & Fabio Miguel & Ricardo Aguasca-Colomo, 2020. "TOPSIS Decision on Approximate Pareto Fronts by Using Evolutionary Algorithms: Application to an Engineering Design Problem," Mathematics, MDPI, vol. 8(11), pages 1-27, November.
    14. Aqsa Naeem & Naveed Ul Hassan & Chau Yuen & S. M. Muyeen, 2019. "Maximizing the Economic Benefits of a Grid-Tied Microgrid Using Solar-Wind Complementarity," Energies, MDPI, vol. 12(3), pages 1-22, January.
    15. B. Koti Reddy & Amit Kumar Singh, 2021. "Optimal Operation of a Photovoltaic Integrated Captive Cogeneration Plant with a Utility Grid Using Optimization and Machine Learning Prediction Methods," Energies, MDPI, vol. 14(16), pages 1-28, August.
    16. Ahmed A. Ewees & Mohammed A. A. Al-qaness & Laith Abualigah & Diego Oliva & Zakariya Yahya Algamal & Ahmed M. Anter & Rehab Ali Ibrahim & Rania M. Ghoniem & Mohamed Abd Elaziz, 2021. "Boosting Arithmetic Optimization Algorithm with Genetic Algorithm Operators for Feature Selection: Case Study on Cox Proportional Hazards Model," Mathematics, MDPI, vol. 9(18), pages 1-22, September.
    17. Maissa Tamraz & Yaming Yang, 2017. "Price Optimisation for New Business," Papers 1711.07753, arXiv.org.
    18. C.J. Price & I.D. Coope, 2003. "Frame-Based Ray Search Algorithms in Unconstrained Optimization," Journal of Optimization Theory and Applications, Springer, vol. 116(2), pages 359-377, February.
    19. Kandidayeni, M. & Macias, A. & Khalatbarisoltani, A. & Boulon, L. & Kelouwani, S., 2019. "Benchmark of proton exchange membrane fuel cell parameters extraction with metaheuristic optimization algorithms," Energy, Elsevier, vol. 183(C), pages 912-925.
    20. C.J. Price & I.D. Coope & D. Byatt, 2002. "A Convergent Variant of the Nelder–Mead Algorithm," Journal of Optimization Theory and Applications, Springer, vol. 113(1), pages 5-19, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:comaot:v:25:y:2019:i:2:d:10.1007_s10588-019-09293-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.